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Phase transitions, being the ultimate manifestation of collective behavior, are typically features of many-
particle systems only. Here, we describe the experimental observation of collective behavior in small
photonic condensates made up of only a few photons. Moreover, a wide range of both equilibrium and
nonequilibrium regimes, including Bose-Einstein condensation or laserlike emission are identified.
However, the small photon number and the presence of large relative fluctuations places major difficulties
in identifying different phases and phase transitions. We overcome this limitation by employing
unsupervised learning and fuzzy clustering algorithms to systematically construct the fuzzy phase diagram
of our small photonic condensate. Our results thus demonstrate the rich and complex phase structure of
even small collections of photons, making them an ideal platform to investigate equilibrium and
nonequilibrium physics at the few particle level.
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Phase transitions are extraordinary manifestations of
collective behavior that mark abrupt changes in the proper-
ties of many-particle systems. The associated discontinu-
ities in the thermodynamic quantities [1–4], which allow an
unequivocal identification of both phases and phases
transitions, can only emerge in the limit of infinite degrees
of freedom [5,6], however. Intuitively, extensive quantities
Q, like energy or particle number, show fluctuations of the
order

ffiffiffiffi
Q

p
, with

ffiffiffiffi
Q

p
=Q vanishing in the thermodynamic

limit Q → ∞, thus giving rise to sharp transitions in large
systems. Photonic condensates have emerged as powerful
platforms for exploring the fundamental physics of phase
transitions and critical phenomena. Equilibrium Bose-
Einstein condensation of light has been achieved in diverse
platforms, including dye-filled microcavities [7–9],
plasmonic lattices [10], or fiber cavities [11]. Dye-filled
microcavities are particularly interesting, as driving, loss,
and thermalization rates can be independently controlled to
give access to rich nonequilibrium regimes [12–16].
Further, the ability to precisely engineer the trapping
potential [17,18] results in an impressive degree of control
over these systems, including the capacity to generate
ensembles of only a few photons [15], begging the question
of whether or not collective behavior and different phases
of matter can still be identified.
Other physical systems are known where, despite the

macroscopic number of particles, the identification of
thermodynamic phases and phase transitions can still be
hindered, for example, by high-dimensional configuration

spaces, or through the existence of nontrivial order para-
meters, like in topological [19,20] or many-body localized
states [21,22]. Machine learning techniques, such as neural
networks, have been shown to successfully detect and
classify such complex phases of matter, mostly due to their
ability to retrieve the often few significant features in
otherwise large sets of data. These frameworks, however,
require prior knowledge of the phase structure of the
system’s Hamiltonian, falling into the domain of supervised
learning [23–28], with few experimental results yet
reported. Some examples include the training of a neural
network far from the critical region and the posterior
characterization of the Mott insulator-superfluid transition
[29], or the usage of an artificially synthesized dataset,
carefully designed to reflect the expected symmetries of a
nematic phase in electronic quantum matter [30].
Unsupervised learning, on the other hand, has received
less attention in the physical sciences. Examples include
the study of simple spin systems [31] or, more recently, the
detection of topological phase transitions [32]. Unrelated
with the detection of phases and phase transitions, unsu-
pervised learning and neural networks can also be used as
generative models, in the context of quantum-state
reconstruction [33,34].
Here, we explore the phases of a small photonic

condensate in a dye-filled microcavity. The trapping
potential is engineered to combine a small cavity volume
with a large mode spacing, as shown in Fig. 1. The
parameter βm is defined as the fraction of spontaneous
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emission into the mth cavity mode, generalizing the
standard β parameter introduced in the context of single-
mode microlasers [35] into the realm of multimode
systems. In the absence of mode-mode coupling and
photon reabsorption, the lasing, or condensation, transition
occurs at a photon number that scales as β−1m , while the
corresponding threshold width is of the order

ffiffiffiffiffiffi
βm

p
.

Criticality is thus recovered in the large cavity limit, i.e.,
the thermodynamic limit β−1m → ∞. Our multimode micro-
cavity operates in a mesoscopic regime characterized by the
existence of collective behavior despite the small system
size. Such a mesoscopic regime, however, being inherently
characterized by large relative fluctuations of order

ffiffiffiffi
Q

p
=Q,

strongly inhibits our ability to detect and characterize
different phases and phase transitions. Details of the
experiment, the underlying physics of microlasers and
photonic condensation in microcavities, as well as a
theoretical model describing these processes can be found
in the Supplemental Material [36].
The photonic modes inside the microcavity are those of a

two-dimensional harmonic oscillator, each with a degen-
eracy proportional to the mode number m. There is a single
m ¼ 0 ground-state located at approximately 540 THz or,
equivalently, 560 nm. Excited states are separated by
roughly 2.1 THz, which is only slightly smaller than the
thermal energy scales, with only a few low-energy modes
becoming thermally accessible [36]. Photon thermalization
results from multiple emission and absorption events with
the dye molecules. These occur at rates Em and Am,
respectively, which are related by the Kennard-
Stepanov relation Am ¼ Eme−δm=kBT , with the detuning

δm ¼ ωZPL − ωm from the zero-phonon line ωZPL of the
dye molecules. We work on the Stokes side of the
molecular transition, where Em > Am. Constant pumping
of dye excitations is required to maintain steady-state
operation due to the finite mirror transmission, which is
quantified by the cavity loss rate κ. Since the finite cavity
lifetime limits the thermalization process, we define the
thermalization coefficient γ ¼ A0=κ as the average number
of absorption events per cavity lifetime, with A0 the
absorption rate at the cavity cutoff. Regimes of good
thermal contact with the molecular reservoir imply fast
thermalization, i.e., γ ≫ 1.
Besides the driven-dissipative character described above,

additional processes occurring in the microcavity contrib-
ute to the emergence of complex nonequilibrium behavior,
as schematically depicted in panel (a) of Fig. 1. The
heterogeneity among the different mode functions gives
rise to a spatially dependent competition for the finite
molecular excitations. The result is a form of incoherent
mode-mode coupling mediated by dye molecules, an effect
which becomes more noticeable at higher pump powers
and is responsible for the breaking of thermal equilibrium.
By tuning the thermalization coefficient and the pump

power, we can thus bring our photonic system into distinct
equilibrium and nonequilibrium regimes, as shown in
Fig. 2. Regions of good thermal contact are characterized
by the existence of a wide thermal regime at low pump
power followed by a smooth transition into a state where
most photons occupy the ground-state alone, consistent
with a Bose-Einstein condensate. On the contrary, under
weaker thermal contact excited states are shown to become
highly populated as the pump power is increased, indicat-
ing a breakdown of thermal equilibrium. A nonequilibrium
model derived from a full quantum description accurately
describes these observations, particularly in the regimes of
strong thermalization [36]. For weaker thermalization, the
mode condensation dynamics are highly dependent on
imperfections in the shape and alignment of the pump
beam, which is at the origin of the slight deviations between
theory and experiment depicted in Fig. 2.
Despite the qualitative observations above, systemati-

cally inferring the existence or not of different phases and
phase transitions remains elusive. Certainly, clear mani-
festations of any form of criticality are mostly absent. This
is neither a peculiarity of the system at study nor a
limitation of the measurement apparatus, but rather a
fundamental statistical consequence of the small particle
number and the complete breakdown of the thermodynamic
limit. Here, we overcome this limitation by turning to a
machine-augmented approach and, as a result, introduce
the idea of fuzzy phases. Importantly, methods known so
far use supervised learning techniques, which require the
prior knowledge of the Hamiltonian phase structure, used
to train models capable of inferring the phase of unlabelled
configurations [24–26,29,30,51]. In contrast, here we start

(a) (b)

FIG. 1. Small photonic condensates: (a) Schematic of our
multimode dye-filled microcavity. The small radius of curvature
induces a tight harmonic potential, whose eigenmodes are
depicted in colors. The resulting large mode spacing highly
suppresses the thermal excitation of highly excited modes.
Because of transverse radial symmetry, nondegenerate photonic
modes are labeled by a single quantum number m. Their spatially
dependent profiles and the resulting mode-mode competition can
bring the system into complex nonequilibrium states exhibiting
collective behavior even at low photon numbers. (b) Illustration
of the effect of the system size, quantified by the parameters βm,
on the criticality of the lasing phase transition, in the limit of
negligible mode-mode coupling. Small systems, βm → 1, are
shown to exhibit broad transitions, while pure criticality is
recovered in thermodynamic limit, β−1m → ∞.
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completely devoid of any knowledge about our photonic
system, thus necessarily falling into the domain of
unsupervised learning, which will allow us to recover
the subtle phase structure of our photonic condensate in
a data-driven and model-free approach.
We consider the relative occupation numbers of the ten

lowest-energy photonic modes. A configuration becomes a
point in this bounded ten-dimensional feature space and
different configurations are spanned by changing the pump
power and thermalization coefficient, these last two defin-
ing the parameter space. The search for structure proceeds
with the clustering of nearby points in feature space, under
a similarity metric, here taken as the simple Euclidean
distance. This is schematically depicted in panel (b) of
Fig. 3. Each cluster contains similar configurations which
are maximally distinguishable from those of the remaining
clusters, being thus identifiable with a particular phase. We
point out that it is important to uniformly sample the
parameter space, such that all inferred structure becomes
uniquely linked to the intrinsic phase properties of the
system at study. The smooth transitions between phases
suggests the use of fuzzy logic, where the association of
configurations and phases becomes probabilistic. More
precisely, for each configuration, i.e., each point x in the
feature space, we wish to find the probabilities pxðiÞ, with
i ¼ 1; 2;…; k and k the estimated number of phases, such
that pxðiÞ is the probability of configuration x belonging to
the ith phase, thus gauging a level of membership between

phases and configurations. The fc-means algorithm [52,53]
computes exactly these membership probabilities by min-
imizing the overall weighted distance between points in
feature space and the cluster centroids—check the
Supplemental Material for mode technical details on the
fuzzy clustering procedure implemented here [36].
Such a probabilistic model allows us to quantify the level

of ambiguity in associating configurations with phases and
introduce the idea of fuzzy phases. Here, the fact that
physical systems made up of only a few particles often
exhibit properties simultaneously consistent with multiple
phases, becomes inherent to the whole formalism, and is
precisely quantified by the set of membership probabilities
pxðiÞ. From these, we can define the representative phase
which, for a fixed configuration x, is taken as the phase i
with the highest membership probability pxðiÞ, if it exists.
We also define the membership entropy as

SxðfpxðiÞgÞ ¼ −
1

logðkÞ
X

i

pxðiÞ log½pxðiÞ�; ð1Þ

thus quantifying the fuzziness of a given phase. It is
normalized such that a maximally fuzzy configuration,
or maximally fuzzy phase, has unit entropy, corresponding
to pxðiÞ ¼ 1=k. On the other hand, definite phases are
recovered in the limit Sx ¼ 0, corresponding to pxðjÞ ¼ 1
and pxði ≠ jÞ ¼ 0.

(a)

(d) (e) (f)

(b) (c)

FIG. 2. Occupation numbers: (a)–(c) Absolute and relative occupation numbers of the first four photonic modes, for different
thermalization regimes. The latter is experimentally tuned by sweeping the cavity cutoff wavelength λ0. Each set of occupation numbers
defines a configuration. The dashed vertical lines mark transitions between different representative phases, which are labeled as in the
text. (d)–(f) Results from the nonequilibrium model of photonic condensation.
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The learned phase structure of our small photonic system
is depicted in Fig. 3. Four different photonic phases are
estimated by minimizing the average membership entropy,
depicted in panel (c). We begin by constructing the
representative phase diagram, shown in panel (d). By
inspection of the bosonic occupation numbers in Fig. 2,
the different phases can be associated with: a thermal phase
(Th); a Bose-Einstein condensate (BEC); and the conden-
sation of the first (L1) and second (L2) excited states. Note
that, while instructive, the information contained in the
representative phase diagram alone is fundamentally
incomplete. The membership entropy further complements
the picture and, together with the representative phase
diagram, allows us to construct the fuzzy phase diagram,
depicted panel (f), which directly reflects the fundamental
absence of critical behavior inherent to the few-particles
regime. Here, instead, different representative phases are
separated by broad regions of large membership entropy or,
equivalently, large phase ambiguity. Supplemental Material
(Fig. 1) [36] further demonstrates this behavior.
The idea of fuzzy phases can be further explored by

considering the nonequilibrium theoretical model of
photonic condensation, as depicted in Fig. 4. Here, we
simulate systems of different size by changing the para-
meter βm. We begin by simulating a smaller system than

(a)

(d) (e)
(f)

(b) (c)

FIG. 3. Fuzzy phase diagram. (a) Total photon number as a function of the pump power and thermalization coefficient. (b) Projection
of the full ten-dimensional feature space onto the two-dimensional plane spanned by the relative occupation of the ground and the first
excited state, after the fuzzy clustering procedure being applied. Different representative phases are shown by different colors, with a
transparency level proportional to the respective membership entropy. (c) Estimation of the number of phases by minimizing the average
membership entropy, whose distribution is approximated by bootstrapping the feature space. The resulting standard deviation is depicted
by the dashed gray area. This ensures the stability of this procedure. (d) Representative phase diagram. (e) Membership entropy. The
fuzzy phase diagram in (f) is constructed from the representative phase diagram in (d) by assigning a transparency level proportional to
the membership entropy in (e). In this way, regions of larger phase ambiguity becoming white, thus visually gauging the degree of
representativeness of the representative phase diagram. The dashed vertical lines indicate the traces depicted in Fig. 2.

(a) (b) (c)

FIG. 4. Fuzzy and sharp photonic condensates. (b) Fuzzy phase
diagram obtained from the nonequilibrium model of photonic
condensation, with parameters that match the experiment. As
described earlier, the model slightly deviates from the experiment
at weak thermalization conditions, where it predicts the con-
densation of the third excited cavity mode, the L3 phase. At
intermediate thermalization rates, we also infer the presence of a
multimode (MM) phase, characterized by the condensation of
both the ground and the first excited state. This is, however, a
relatively narrow and fuzzy phase which is not resolved in the
experiment. The theoretical model is also used to generate
configurations for both smaller (a) and larger (c) photonic
condensates, quantified by the fraction of spontaneous emission
into the ground state. The thermodynamic limit is approached
from left to right.
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that of the experiment, βm > βexpm . Here, the membership
entropy (fuzziness) increases across the entire phase dia-
gram. As a result, the optimal classification essentially
retains the existence of only the thermal and the Bose-
Einstein condensed phase. Previously inferred phases in
larger systems are now blurred together with the thermal
phase, as it no longer becomes relevant to consider them as
independent phases. This is not arbitrarily imposed but
rather optimally inferred by the fuzzy clustering procedure
acting on observational data alone. On the other hand, for a
larger system, βm < βexpm , the membership entropy across
the phase diagram becomes smaller and mostly concen-
trated in the increasingly narrower regions between repre-
sentative phases. In the limit of infinite number of particles
(thermodynamic limit), the membership entropy vanishes
everywhere, as each configuration is uniquely associated
with a particular phase with unit probability, except
in the infinitesimally narrow regions marking pure phase
transitions.
The increasing ability to control and prepare small

atomic [54,55] and photonic [15,17,56] systems has given
rise to a great deal of scientific interest in few-particle
physics [57,58]. In this work, we have demonstrated that
small collections of photons in dye-filled microcavities can
be prepared in a wide range of both equilibrium and
nonequilibrium configurations, ranging from thermal equi-
librium distributions and Bose-Einstein condensates, to
nonequilibrium laser emission. The systematic inference of
such rich phase structure, however, was shown to be
severely limited by the presence of large relative fluctuation
and the resulting absence of critical behavior. This limi-
tation was overcome by employing machine learning
techniques, where criteria for defining phases and phase
transitions are neither phenomenologically or axiomatically
imposed, but rather optimally inferred from observational
data alone. While the clustering approach is applicable for
systems of any size, the probabilistic nature of the fuzzy
logic algorithms becomes particularly relevant in small
system. Importantly, the fuzzy character does not reflect a
state of incomplete knowledge but rather a fundamental
statistical implication of the small particle number. We
anticipate immediate applications of these techniques in the
investigation of how collective effects emerge from a
bottom-up approach, as the system’s size is gradually
increased [59], or in the investigation of how magnetic
phases change in the few-particle limit [60]. A distinct, yet
exciting possibility, would be the identification of fuzzy
phases in the context of liquid phase condensation inside
biological cells, where the formation of membrane-less
coherent structures seems to depend on smoothly varying
concentration thresholds, suggesting the presence of sig-
nificant finite-size effects [61,62].
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