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We identify the chaotic phase of the Bose-Hubbard Hamiltonian by the energy-resolved correlation
between spectral features and structural changes of the associated eigenstates as exposed by their
generalized fractal dimensions. The eigenvectors are shown to become ergodic in the thermodynamic limit,
in the configuration space Fock basis, in which random matrix theory offers a remarkable description of
their typical structure. The distributions of the generalized fractal dimensions, however, are ever more
distinguishable from random matrix theory as the Hilbert space dimension grows.
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Ergodicity, understood as the ability of a system to
dynamically explore, irrespective of its initial state, all
possible configurations at given energy, is, in general, an
exceedingly difficult to prove and rather rare property, at
the classical and quantum level [1–3]. On the quantum side,
safe ground is established by (intrinsically ergodic [4])
random matrix theory (RMT), which describes systems
with classically strictly chaotic (“K-systems” [1–3,5])
dynamics [6]. RMT predictions for energy spectra and
eigenstates [7,8] define popular benchmarks to certify
ergodicity [9,10].
Ergodicity can, however, emerge on widely variable time

scales, hinging on finer structures of phase space, and, at
the quantum level, on the effective coarse graining thereof
induced by the finite size of ℏ [11]. Since the majority of
dynamical systems features mixed rather than strictly
chaotic dynamics [12–17], one therefore expects detectable
deviations from RMTergodicity [18,19], in particular at the
level of the eigenvectors’ structural properties—which
reflect the underlying phase space structure [12–16,20].
This holds on the level of single as well as of many-body
quantum systems, with engineered ensembles of ultracold
atoms [21–26] as a modern playground: Notably, interact-
ing bosons on a regular lattice provide a paradigmatic
experimental setting to explore the questions above
[27–31]; they feature chaos on the level of spectral
[32–35] and eigenvector properties [32,33,36–39] as well
as quench dynamics [40–44].
Here we consider the one-dimensional Bose-Hubbard

Hamiltonian (BHH) and combine state-of-the-art numerical
simulations with analytical calculations to establish a so far
missing integral picture of its chaotic and nonergodic
phases, providing deeper insight into the concept of chaos
and ergodicity in the quantum realm. We demonstrate that
(i) the energy-resolved chaotic phase is signaled by a clear

correlation between spectral features and eigenstate struc-
tural changes captured by generalized fractal dimensions
(GFDs) (cf. Fig. 1), whose fluctuations exhibit the
same qualitative behavior in the two natural bases of the
Hamiltonian, (ii) a nonergodic phase persists in the
thermodynamic limit, as a function of a scaled tunneling
strength, (iii) eigenvectors within the chaotic phase become
ergodic in the thermodynamic limit in the configuration
space Fock basis, where RMT provides a remarkable
description of the eigenstates’ typical (i.e., most probable)
GFDs, (iv) despite such agreement, according to the GFD
distributions BHH and RMT depart from each other in an
unequivocal statistical sense with increasing size of Hilbert
space. This implies that the fluctuations of the eigenstates’
structure along the path to ergodicity (even if it be
arbitrarily close to RMT at a coarse-grained level) contain
statistically robust fingerprints of the specific underlying
Hamiltonian.
In terms of standard bosonic operators associated with L

Wannier spatial modes, the BHH [45–47] is the sum of a
tunneling and a local interaction Hamiltonian with respec-
tive strengths J and U,

Htun ¼ −J
X
k

ðb†kbkþ1 þ b†kþ1bkÞ; ð1Þ

Hint ¼
U
2

X
k

nkðnk − 1Þ: ð2Þ

The BHH exhibits a Z2 symmetry under the reflection
operation (Π) about the center of the lattice. In the presence
of periodic boundary conditions (PBCs), the BHH addi-
tionally has translational symmetry, and Hilbert space can
be decomposed into L irreducible blocks distinguished by
the center-of-mass quasimomentum Q. The Q ¼ 0 block
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further disjoins into symmetric (π ¼ þ1) and antisymmet-
ric (π ¼ −1) subspaces. For hard-wall boundary conditions
(HWBCs), the latter π division applies to the full
Hilbert space.
Both Htun and Hint are integrable and analytically

solvable in appropriate Fock bases. The eigenvectors of
the interaction term are the Fock states of the on-site
number operators, jni≡ jn1;…; nLi, with jjnjj1 ¼ N,
where N is the number of bosons. The eigenvectors of
Htun follow from the Fock states of number operators of
spatially delocalized plane-wave or standing-wave modes,
for PBCs or HWBCs, respectively.
The competition between tunneling and interaction

makes the BHH nonintegrable: For comparable J and U,
it exhibits spectral chaos [32–35], identified by short-range
spectral measures in accord with the Gaussian orthogonal
ensemble (GOE) of RMT. This may be traced back
to the underlying classical Hamiltonian [16,34,48], whose
dynamics are governed by the scaled energy H=UN2

and the scaled tunneling strength η≡ J=UN. In the
quantum system, one therefore expects η to control
the emergence of chaos in sufficiently dense spectral
regions.
We numerically analyze the BHH at unit filling (N ¼ L):

Eigenstates around chosen energy targets [49–51]
as well as full spectra, scaled as ϵ≡ ðE − EminÞ=
ðEmax − EminÞ ∈ ½0; 1�, enabling the juxtaposition of results
for differentN and η, are obtained by exact diagonalization.
Since the form of Htun and Hint reveals that Emax − Emin ∼
UN2 for large N, ϵ effectively provides the classically
scaled energy. Short-range statistical features of the spec-
trum are best captured by the level spacing ratios [52,53],
rn ¼ minðsnþ1=sn; sn=snþ1Þ, where sn ¼ Enþ1 − En is the
nth level spacing. The distributions of r are known
approximately analytically for Gaussian random matrix
ensembles and accessible numerically without further
unfolding procedures, e.g., hriGOE ≈ 0.5307 [53].

The eigenstate structure of generic many-body
Hamiltonians in Hilbert space exhibits multifractal com-
plexity [54–64], and is conveniently described by finite-
size generalized fractal dimensions (GFDs) [62,65],

D̃q ≡ 1

1 − q
logN Rq; with Rq ¼

X
α

jψαj2q; q ∈ Rþ;

ð3Þ

for eigenvectors with amplitudes ψα in a given orthonormal
basis of size N . The eigenvector moments are expected to
scale asymptotically as Rq ∼N −ðq−1ÞDq , where the dimen-
sions Dq ≡ limN→∞ D̃q decide whether the state is
localized (Dq ¼ 0 for q ≥ 1 [66]), multifractal (extended
nonergodic; q-dependent 0 < Dq < 1), or ergodic (Dq ¼ 1
for all q), in the chosen expansion basis. Consequently, the
support of ergodic eigenstates—e.g., the eigenvectors of the
Wigner-Dyson RMT ensembles [68]—scales asymptoti-
cally as the full Hilbert space. Among all GFDs, we focus
on D̃1, governing the scaling of the Shannon entropy of
fjψαj2g, D̃2, determining the scaling of the eigenstate’s
inverse participation ratio, and D̃∞ ¼ − logN maxα jψαj2,
unveiling the extreme statistics of the state’s intensities.
We first analyze the connection between spectral chaos

and the eigenstates’ GFDs. In Figs. 1(a)–1(c), we show the
evolution of hri, hD̃1i, and varðD̃1Þ, as functions of scaled
energy ϵ and scaled tunneling strength η, for N ¼ 12 and
PBCs (subspace Q ¼ 0, π ¼ −1), evaluated in the eigen-
basis of Hint. The ϵ spectrum is divided into 100 bins of
equal width; mean values and variances are computed from
eigenvalues and eigenvectors falling into each bin. Energy-
resolved density plots expose the coarse-grained level
dynamics of the system: Heavily degenerate manifolds
of Hint fan out as η increases, overlap, and then form a bulk
region massively populated by avoided crossings (observ-
able upon finer inspection [69]), which eventually dissolves

FIG. 1. Evolution of hri (a), hD̃1i in the eigenbasis of Hint (b) and varðD̃1Þ in the eigenbases of Hint (c) and Htun (d), as functions of η
and energy ϵ ¼ ðE − EminÞ=ðEmax − EminÞ, for the irreducible Hilbert subspace of size N ¼ 55898 with Q ¼ 0 and π ¼ −1, for
N ¼ L ¼ 12with PBCs. The spectrum was obtained for 75 equally spaced values of log10ðJ=UÞ ∈ ½−2.92; 3�, and divided into 100 bins
of equal width along the ϵ axis. The value hriGOE is highlighted over the left color bar. Blue dashed lines mark the value ϵ ¼ 0.5
considered in Fig. 2.
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as the levels reorganize into the bands allowed by Htun, for
η ≫ 1. We identify a slightly bent oval region of spectral
chaos, centered around η ≃ 0.1 and extending over
0.1≲ ϵ≲ 0.9, where hri attains the GOE value. This region
remains visible after averaging r over a large portion of the
bulk spectrum, even without resolving the Π symmetry
[70]. The onset of spectral chaos correlates with a sudden
increase in the eigenvectors’ GFDs, which reach maximum
values within the spectral chaos region, as demonstrated for
hD̃1i. Strictly simultaneously, the energy-resolved GFD
variance undergoes a dramatic reduction by several orders
of magnitude. This behavior is also revealed by D̃2 and D̃∞,
and qualitatively the same in any irreducible subspace, also
for HWBCs. The chaotic regime can therefore be identified
by the unambiguous correlation between spectral features
and structural changes of eigenstates, which, as revealed by
the GFDs, tend to homogenize their delocalization in
Hilbert space, irrespective of their energy.
To elucidate the eigenstates’ structural dependence on

the Hilbert space’s size, Fig. 2 shows the mean and variance
of D̃1, for fixed ϵ ¼ 0.5 (where the density of states is
maximum once spectral chaos kicks in), versus η, for
increasing size (up to N ≈ 2.6 × 106) of the π ¼ −1
subspace with HWBCs. hD̃1i registers a surge around
η ¼ 0.1, and reaches a maximum that develops into a
distinct plateau, extending towards larger η for increasing
L. (Also hri exhibits plateau broadening at ϵ ¼ 0.5 [69].)
This behavior is mirrored by the drastic (ever bigger, with
increasing L) drop of varðD̃1Þ, with plateaux at its minima.
Note that the plateau values of hD̃1i and varðD̃1Þ agree well
with those expected for GOE eigenvectors, indicated by
dashed lines in Fig. 2. The same is qualitatively observed

for q ¼ 2, ∞, other irreducible subspaces, and PBCs. The
onset of the plateaux appears system size independent in
terms of η [70], confirming the relevance of the classically
scaled tunneling strength.
To shed further light on the GFD asymptotics within the

chaotic region, the lower panels of Fig. 3 show hD̃qi and
varðD̃qÞ at ϵ ¼ 0.5 and η ¼ 0.25, for increasing N of four
irreducible subspaces, evaluated in the corresponding
eigenbases of Hint. The results are compared against the
GOE values, which, using known distributions [74] and
extreme statistics [75], can be estimated analytically [70].
We find, asymptotically,

hD̃1iGOE ¼ 1 −
1

lnN

�
2 − γ − ln 2 −

1

N
þOðN −2Þ

�
; ð4Þ

hD̃∞iGOE ¼ 1 −
lnð2 lnN Þ

lnN
þOðln lnN = ln2N Þ; ð5Þ

where γ is Euler’s constant, and

varðD̃1ÞGOE ¼ 1

ln2N

�
3π2 − 28

2N
þOðN −2Þ

�
; ð6Þ

varðD̃∞ÞGOE ∼ ln−4N : ð7Þ

For q ¼ 2, we compare the results to the ensemble-
averaged GFD, hD̃ðensÞ

q iGOE ¼ logN hRqi=ð1 − qÞ, instead
[19,70], with finite-size corrections found identical (up to
coefficients) with those for D̃1. As shown in Fig. 3, the
GFDs, as well as varðD̃qÞ, in the eigenbasis of Hint quickly
approach GOE values, independently of subspace or
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FIG. 2. Evolution of hD̃1i (top) and varðD̃1Þ (bottom) at ϵ ¼
0.5 versus η, for varying values of L and size ðN Þ (as indicated by
the legend) of the subspace spanned by the π ¼ −1 eigenstates of
Hint with HWBCs. Each data point results from the analysis of the
100 BHH eigenvectors closest to ϵ ¼ 0.5. Corresponding GOE
values are indicated by dashed lines. The inset shows the behavior
of c1ðN Þ ¼ ð1 − hD̃1iÞ lnN versus η around the crossover
region (solid lines are guides to the eye). The horizontal dotted
line marks the GOE value of c1ðN → ∞Þ.

FIG. 3. Average and variance of D̃1, D̃2, and D̃∞, at η ¼ 0.25
and ϵ ¼ 0.5, versus size N of four Hilbert subspaces (distin-
guished by symbols as indicated; each data point involves 100
eigenstates as in Fig. 2). Lower (upper) panels correspond to the
analysis in the eigenbasis of Hint (Htun). Solid lines show GOE
predictions. Whenever not shown, errors are contained within
symbol size.
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boundary conditions (for the largest N shown,
hD̃1iGOE − hD̃1i ¼ 8 × 10−4). The dominant finite-size
correction seems to have the same N dependence for
the BHH as for GOE eigenvectors, and the GFDs show
clear evidence of converging to 1 in the thermodynamic
limit (as the corresponding variance vanishes). We there-
fore conclude that the BHH eigenvectors in the chaotic
regime become ergodic in the eigenbasis of Hint in the
thermodynamic limit.
Hence, as N → ∞, the plateau value of hD̃1i in Fig. 2

approaches 1, and, although the crossover into the chaotic
region becomes more pronounced with larger L, we cannot
definitely determine whether it turns into a sharp transition
(i.e., a discontinuity of the derivative with respect to η)
or remains smooth and differentiable. The transition
features a standard scaling behavior [59,60,63,65] in terms
of c1ðN Þ≡ ð1 − hD̃1iÞ lnN : For increasing L, c1 is
unbounded in the nonergodic phase (where hD̃1i < 1,
i.e., the eigenstates are generically multifractal), and
decreases to converge to a constant value in the chaotic
phase if the dominant finite-size correction is ln−1 N . That
is indeed the behavior observed numerically (inset of
Fig. 2), which confirms that the nonergodic phase for
small η persists in the thermodynamic limit. Given the lack
of analytical information, we refrain from detailed finite-
size scaling analyses on c1. Nonetheless, close inspection
of the tendency of the data locates the transition or
crossover, at ϵ ¼ 0.5, in the thermodynamic limit within
the region η ∈ ½0.15; 0.2� to a reasonable level of con-
fidence. The plateaux’s right termination points show no
hint of reaching a finite asymptotic value for increasing L,
an absence less pronounced for PBCs [70]. Although it is
appealing to think that an infinitesimal interaction suffices
to induce ergodicity in the thermodynamic limit (as dis-
cussed for fermions [76]), and hence that the chaotic phase
might have no upper η limit (the point η ¼ ∞ then being a
discontinuity), further investigation is necessary to verify
such a hypothesis.
Given the demonstrated quality of RMT predictions, one

may naively conclude that, at the level of simple eigen-
vector observables such as Hilbert space (de)localization
captured by GFDs, as L grows the BHH unequivocally
assumes universal RMT behavior within its chaotic phase.
But a detailed inspection indicates otherwise: Analysis of
the full GFD distributions in Fig. 4 reveals that, although
the first and second moments approach the GOE values, the
distributions become more distinguishable from GOE as L
increases. The distance between the BHH and GOE
distributions is quantified in Fig. 4(c) using the square
root of the Kullback-Leibler divergence (relative entropy)

[77,78],
ffiffiffiffiffiffiffiffiffi
KLq

p
, and dqðN Þ≡ δq=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðD̃qÞ

q
, where

δq ≡ hD̃qiGOE − hD̃qi. Both of these measures increase
with L for q ¼ 1; 2;∞, demonstrating that, even at the level
of the GFDs, the two models depart from each other in a

statistically unambiguous way: For N ≳ 106 (L ≥ 13, 15,
depending on boundary conditions) the typical D̃1;2 lies
more than 10σ away from the most probable GOE value.
The distance between the GFD distributions provides
valuable information on the finite-size corrections for
BHH eigenvectors. Since varðD̃1;2Þ ∼ 1=N ln2N , the
growth of d1;2ðN Þ with N entails that hD̃1;2i and
hD̃1;2iGOE differ at terms decaying slower than

1=
ffiffiffiffiffi
N

p
lnN . A data inspection indicates d1;2ðN Þ ∼ffiffiffiffiffi

N
p

= lnN as the most likely behavior for large N ,
implying that hD̃1;2i bear a 1= ln2N subleading correction
[70]. Note that, for nonoverlapping Gaussian distributions
of similar width,

ffiffiffiffiffiffiffiffiffi
KLq

p
is equivalent to dqðN Þ. Hence,

comparison of these two quantities also provides the
distributions’ deviation from Gaussianity, as manifestly
visible for q ¼ ∞.
We finally address the chaotic eigenstates’ features’

dependence on the expansion basis. Although the GFDs
are naturally basis dependent, the eigenstates’ ergodic
character in the thermodynamic limit suggests some degree
of invariance under rotations. An analysis performed in the
eigenbasis of Htun, instead of Hint, reveals the same
qualitative behavior of the energy-resolved varðD̃qÞ as
demonstrated in Fig. 1(d): The GFD fluctuations are
strongly suppressed, by several orders of magnitude, and
undergo an ever bigger drop for larger system size, within

(a)

(b) (c)

FIG. 4. Evolution of the probability density function of D̃q with
increasing size N of the subspace spanned by the π ¼ −1
eigenstates of Hint with HWBCs. Panels (a) and (b) display
the distributions of D̃1 and D̃∞, respectively, for the indicated L
values. Each histogram comprises 500 eigenstates at ϵ ¼ 0.5 in
the chaotic domain (100 eigenstates × five values of
η ∈ ½0.25; 0.38�). The D̃1 distribution for L ¼ 11 (L ¼ 12) is
normalized to 4 (2) for better visualization. Solid lines show GOE
distributions [70], the distance to which is evaluated in panels (c),
via the difference δq of the means (upper plot), the renormalized

difference δq=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðD̃qÞ

q
, and the Kullback-Leibler divergence

(lower plot).
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the same parameter region as observed in the Hint basis and
in the averaged r statistic. Nonetheless, in the eigenbasis of
Htun, there is no clear identification of a hD̃qi plateau in the
chaotic region [70], and the typical GFDs are distant from
the GOE values, as shown in the upper panels of Fig. 3. If
the GFDs in this basis converge to the ergodic limit, too,
this is a much slower process governed by stronger finite-
size corrections. Such basis dependence reflects the differ-
ent dynamics that excited eigenstates of Hint or of Htun will
exhibit under the BHH unitary evolution: While the
first display indications of chaos already in relatively
small systems [31,41], the second may be substantially
dominated by finite-size and finite-time effects.
We provided an integral view on the chaotic and non-

ergodic phases of the Bose-Hubbard Hamiltonian, estab-
lished by an energy-resolved correlation between spectral
features and eigenstate structural changes exposed by the
typical values and fluctuations of generalized fractal
dimensions. Our results suggest that GFD fluctuations
are far more sensitive probes of emergent chaotic behavior
than the GFDs themselves, and may identify the chaotic
phase in any nontrivial basis. In the eigenbasis of the
Hamiltonian’s interaction part, the chaotic phase eigenvec-
tors become ergodic in the thermodynamic limit, and are
remarkably well described by RMT. Yet, in terms of the
GFD distributions, their path towards ergodicity turns
increasingly more distinguishable from RMT for larger
Hilbert spaces, which suggests a statistical handle to
discriminate bona fide BHH dynamics in the limit of
numerically intractable Hilbert space dimensions. This
relates our present results to the field of the certification
of distinctive rather than universal features of complex
quantum systems [79–82]. Whether this distinct GFD
statistics of the BHH with respect to RMT can be traced
down to unambiguously unique features of the underlying
Hamiltonian, or, alternatively, accommodated by more
sophisticated random matrix ensembles [83–85], awaits
further scrutiny.
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scaling of the Shannon-Rényi entropy in two-dimensional
systems with spontaneously broken continuous symmetry,
Phys. Rev. B 95, 195161 (2017).

[62] J. Lindinger, A. Buchleitner, and A. Rodríguez, Many-Body
Multifractality throughout Bosonic Superfluid and Mott
Insulator Phases, Phys. Rev. Lett. 122, 106603 (2019).
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