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The class of possible thermodynamic conversions can be extended by introducing an auxiliary system
called catalyst, which assists in state conversion while its own state remains unchanged. We reveal a
complete characterization of catalytic state conversion in quantum and single-shot thermodynamics by
allowing an infinitesimal correlation between the system and the catalyst. Specifically, we prove that a
single thermodynamic potential, which provides the necessary and sufficient condition for the correlated-
catalytic state conversion, is given by the standard nonequilibrium free energy defined with the
Kullback-Leibler divergence. This resolves the conjecture raised by Wilming, Gallego, and Eisert
[Entropy 19, 241 (2017)] and by Lostaglio and Müller [Phys. Rev. Lett. 123, 020403 (2019)] in the
positive. Moreover, we show that, with the aid of the work storage, any quantum state can be converted into
another by paying the work cost equal to the nonequilibrium free energy difference. Our result would serve
as a step towards establishing resource theories of catalytic state conversion in the fully quantum regime.
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Introduction.—The extension of thermodynamics to
small-scale quantum systems has attracted attention in
various research fields. A variety of the second laws
employing the Rényi entropies and divergences [1–4] or
majorization [5–8] naturally arise in the small scale, which
is contrastive to conventional thermodynamics where only
a single thermodynamic potential such as the equilibrium
free energy characterizes state convertibility [9]. Recent
studies pushing toward this direction have been developed
in terms of resource theories [6,7,10]. The resource theory
of athermality [4,11–13] paves the way for establishing the
information-theoretic foundation of thermodynamics.
In resource theories, an auxiliary system called catalyst

plays a key role [14], assisting the state conversion while
the catalyst itself does not change. To formulate the
catalytic state conversion, we suppose the composite
system of the system and the catalyst, and consider a state
conversion ρ ⊗ c → σ ⊗ c, where ρ, σ are states of the
system and c is a state of the catalyst. On one hand, if we
require the exact return of the catalyst, an infinite family of
Rényi entropies or divergences characterizes possible
catalytic state conversion [1–4]. On the other hand, if
we allow a small finite error in the final state of the catalyst,
any state conversion is possible, which is called embezzling
[4,15,16]. Here our focus lies in their intermediate regime,
where another nontrivial characterization of state convert-
ibility emerges.
Specifically, we consider the situation that the catalyst

returns to its initial state exactly but with a negligibly
small correlation between the system and the catalyst.
As observed in Refs. [17,18], stochastic independence

(absence of correlations) is a resource of thermodynamic
state conversions. Along with this idea, Wilming, Gallego,
and Eisert [19] conjectured that the nonequilibrium free
energy defined by the quantum Kullback-Leibler (KL)
divergence gives the unique criterion of correlated-
catalytic state conversion via a Gibbs-preserving map with
a negligibly small correlation. In the classical case, this
conjecture has been solved in the positive by Müller [20]
and generalized by Rethinasamy and Wilde [21]. However,
these results cannot apply to the quantum case, because
unlike the classical case known criteria for quantum
relative majorization are highly complicated [22–24].
Therefore, the original conjecture raised in Ref. [19] (also
raised in Ref. [25] in a rigorous manner) for the quantum
cases has still been left as a highly nontrivial open
problem.
In this Letter, we solve this problem for the quantum case

[19,25] in the affirmative: We prove that the KL divergence
indeed characterizes quantum correlated-catalytic state
conversion in a necessary and sufficient manner. That is,
the correlated-catalytic state conversion between two given
quantum states by a Gibbs-preserving map is possible if
and only if the nonequilibrium free energy defined by the
KL divergence does not increase. We further prove that
even if the final free energy is larger than the initial one, we
can still convert the initial state to the final one by adding a
two-level work storage and paying the work cost equal to or
greater than the free energy difference. Our result implies
that the conventional form of the second law given by the
KL divergence is restored even in the quantum regime, if
the catalyst is allowed to correlate with the system.
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Setup and the main claim.—Consider a finite-dimen-
sional quantum system with HamiltonianH. We investigate
state conversion through a particular class of the completely
positive and trace-preserving (CPTP) maps, called Gibbs-
preserving maps Λ, which keep the Gibbs state invariant:
ΛðρGibbsÞ ¼ ρGibbs. Here, ρGibbs ≔ e−βH=Z is the Gibbs
state with the inverse temperature β of the environment.
We set the Boltzmann constant to unity. In terms of the
resource theory of athermality, the Gibbs state is a free state
(with zero athermality), and Gibbs-preserving maps do not
generate any nonfree state (with nonzero athermality) from
a free state.
We employ an external system called the catalyst

denoted by C, which assists state conversion of the system
S while the state of C itself does not change (see also
Fig. 1). As in Refs. [4,13,17,18,20,21,26–28], we allow a
negligibly small error on the final state of S, while the
marginal state of C exactly goes back to the initial state.
The most crucial assumption is to allow a negligibly small
correlation between S and C in the final state. This
assumption is motivated by the fact that negligibly small
correlations are always allowed between the system and the
environment in conventional thermodynamics. In terms of
resource theories, a catalyst for a system can be reused as a
catalyst for other systems even when a correlation with the
first system remains.
We define the nonquilibrium free energy as

FðρÞ ≔ S1ðρjjρGibbsÞ, where S1ðρjjρGibbsÞ ≔ Tr½ρ ln ρ� −
Tr½ρ ln ρGibbs� is the KL divergence [29]. We now state
our first main theorem:
Theorem 1.—Consider two quantum states of S; ρ and

ρ0. Then, FðρÞ ≥ Fðρ0Þ is satisfied if and only if there exist
a catalyst C and its state c, and a Gibbs-preserving map Λ
satisfying Λðρ ⊗ cÞ ¼ τ such that (i) TrS½τ� ¼ c, (ii) TrC½τ�
is arbitrarily close to ρ0, (iii) the correlation between S and
C in the final state is arbitrarily small.
The fully rigorous statement of the above theorem and its

proof are presented in the Supplemental Material [30].
Here, we only remark that the closeness between states is
quantified by the trace distance d1ðρ0; ρ00Þ ≔ 1

2
Tr½jρ0 − ρ00j�

and the amount of the correlation is quantified by
the mutual information ISC½τ� ≔ S1ðτjjρ00 ⊗ cÞ, where

ρ00 ¼ TrC½τ� is the reduced state of τ on S. An arbitrarily
small error can be achieved by choosing an appropriate
catalyst, which might be very large. This theorem manifests
that the free energy FðρÞ serves as the single monotone of
quantum thermodynamics at the small scale if we allow a
negligibly small correlation between the system and the
catalyst.
In the case of FðρÞ < Fðρ0Þ, Theorem 1 implies that we

cannot convert ρ to ρ0 through any Gibbs-preserving map.
However, even in this case, we can convert ρ to ρ0 with the
aid of the work storageW (see Fig. 1). Thework storage is a
two-level system which compensates for the energy change
in S by investing the work cost. The initial state of W is an
energy eigenstate jai with energy Ea, and the final state is
arbitrarily close to another energy eigenstate jbi with
energy Eb. Thus, the work value is almost deterministic,
which is an approximate version of the single-shot
scenario [8,20,31].
By applying Theorem 1 to the composite system SW, we

find that ρ ⊗ jaihaj can be converted to a state close to
ρ0 ⊗ jbihbj with a catalyst if we allow a correlation
between SW and C. Further to that, we can prove a much
stronger statement: the desired state conversion is possible
even when there is no correlation between W and the
remaining part SC:
Theorem 2.—Consider two quantum states ρ and ρ0 of

the system Swith FðρÞ − Fðρ0Þ < 0. Then, FðρÞ − Fðρ0Þ ≥
w is satisfied if and only if there exist a catalyst C and its
state c, a work storage W with Eb − Ea ≥ w, and a Gibbs-
preserving map Λ satisfying Λðρ ⊗ c ⊗ jaihajÞ ¼ τ ⊗ ω
with τ and ω being states of SC and W, such that
(i) TrS½τ� ¼ c, (ii) TrC½τ� is arbitrarily close to ρ0, (iii) ω
is arbitrarily close to jbihbj, (iv) the correlation between S
and C in τ is arbitrarily small.
This theorem reveals the minimum work cost when C

correlates only with S as depicted in Fig. 1, and represents
the principle of maximum work [32–34]. The foregoing
two theorems together provide the second law of quantum
thermodynamics in the small scale, yet in the apparently
same form as conventional macroscopic thermodynamics.
We note that Theorem 2 only applies the case of the work

investment (w < 0), and does not cover the case of the work
extraction (w > 0). We will, however, discuss a sufficient
condition for the case of work extraction in the
Supplemental Material (Lemma 3) [30].
Outline of the proof.—The if part is easy to prove by

applying the superadditivity of the KL divergence.
Therefore, we here summarize the outline of the proof
of the only if part. The detailed idea is demonstrated along
with a simple example soon later, and the full proofs are
presented in the Supplemental Material [30]. We mainly
treat Theorem 1 and briefly comment on Theorem 2.
Our proof consists of three steps. In Step 1, we provide a

sufficient condition to convert a quantum state σ to
another state σ0 via a Gibbs-preserving map by explicitly

FIG. 1. Schematic of our setup. We convert the system S from ρ
to ρ0 with the aid of the catalyst C and the work storage W. The
catalyst C returns to its original state while it can correlate with
the system. The work storage W changes its state with energy
difference w ≤ FðρÞ − Fðρ0Þ with probability arbitrarily
close to unity.
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constructing the desired map. We first perform a binary
quantum measurement to determine whether the state is σ
or the Gibbs state σGibbs, and then prepare two quantum
states depending on the measurement outcome. In the case
of Theorem 2 (with work storage), we consider not binary
but ternary measurements, which require more careful
treatment. The derived sufficient condition employs two
kinds of divergences; the quantum hypothesis testing
divergence [35] and the quantum Rényi divergence. This
sufficient condition has been obtained by some of the
literature explicitly [36] and implicitly [8,27,28,37,38].
In Step 2, we apply the quantum Stein’s lemma, which

claims the convergence of the quantum hypothesis testing
divergence rate to the KL divergence rate in the limit of
infinitely many copies of given quantum systems [39,40].
The reason why quantum hypothesis testing appears in
quantum thermodynamics is that the ε-smoothed Rényi-∞
divergence (introduced later) is bounded from both above
and below by two quantum hypothesis testing divergences,
and hence it also converges to the KL divergence [41,42].
In generic systems, the size of the catalyst diverges with the
vanishing error and correlation (ε, δ → 0). The necessary
size of a catalyst can be evaluated by examining the
aforementioned convergence speed [39–42].
In Step 3, we reduce the result on the asymptotic state

conversion (with multiple copies of states) of Step 1 and 2
to the catalytic state conversion. Although this type of
reduction has been discussed in some of the literature
[1,4,43], we need some modification on the existing
technique to keep the catalyst at the same state, because
our asymptotic state conversion accompanies errors.
Combining these three steps, we arrive at the desired result.
Toy example of Theorem 1.—We demonstrate the proof

of the only if part of Theorem 1 in a toy example, a two-
level system spanned by fj0i; j1ig. We will construct two
states that are not convertible from one to the other without
catalyst, but are convertible with a correlated catalyst. For
this purpose, we set ρ ¼ ð3=200Þj0ih0j þ ð197=200Þj1ih1j,
ρ0 ¼ jþihþj with jþi ≔ 1=

ffiffiffi
2

p ðj0i þ j1iÞ, β ¼ 1,
E0 ¼ 0 and E1 ¼ ln 3. The Gibbs state is given by
ρGibbs ¼ ð3=4Þj0ih0j þ ð1=4Þj1ih1j. We set the upper
bound of the error and the correlation strength as ε ¼
0.01 and δ ¼ 0.06, respectively. This state conversion is
fully quantum because ρ0 is not diagonal in the energy
eigenbasis. We remark that any Gibbs-preserving map
without catalyst cannot convert ρ to ρ0. To see this,
we introduce the Rényi-∞ divergence S∞ðσjjκÞ ≔
lnðmin½λ∶σ ≤ λκ�Þ and its ε-smoothing Sε∞ðσjjκÞ ≔
mindðσ0;σÞ≤ε S∞ðσjjκÞ with ε > 0. The Rényi divergence
satisfies the monotonicity under CPTP maps, and hence
Sε∞ðρ0jjρGibbsÞ ≤ S∞ðρjjρGibbsÞ is a necessary (but not suf-
ficient) condition for state conversion without catalyst.
However, we can show Sε∞ðρ0jjρGibbsÞ > S∞ðρjjρGibbsÞ in
the above parameter setting [see Fig. 2(a)]. We note that the
above catalytic state conversion requires only 11 qubits,

which is accessible by recent or near-term experimental
techniques of, e.g., superconducting qubits [44,45].
We treat Step 1 and Step 2 in parallel. Consider a

composite system of eight copies of the two-level system:
fj0i; j1ig⊗8. We construct a CPTP map which converts ρ⊗8

to a state Ξ satisfying d1ðΞ; ρ0⊗8Þ < ε while keeping
ρGibbs

⊗8 unchanged. We introduce the projection operator
Q onto the subspace of fj0i; j1ig⊗8 spanned by a subset of
the computational basis that contains at most one j0i.
We perform the binary measurement with fQ; 1 −Qg in
order to distinguish ρ⊗8 and ρ⊗8

Gibbs. By this measurement,
ρ⊗8 outputs Q with probability 0.994 � � � > 1 − ε, and
ρ⊗8
Gibbs outputs 1 −Q with probability 1 − ð25=48Þ. Their
differences from 1 (i.e., 0.005� � � and 25=48) correspond to
the error of the first and the second kinds [30], respectively.
We then prepare quantum states depending on the meas-
urement outcome. If the outcome is Q, we prepare the state
jþihþj, and if the outcome is 1 −Q, we prepare the state ζ
expressed as

ζ ¼ 1

1 − 25
48

�
ρ⊗8
Gibbs −

25

48
jþihþj⊗8

�
; ð1Þ

which is positive semidefinite because ρ⊗8
Gibbs − λjþi

hþj⊗8 ≥ 0 for λ ≤ ð3=8Þ8 [30] and 25=48 < ð3=8Þ8. This
measurement-and-preparation procedure indeed converts
ρGibbs to ρGibbs by construction and converts ρ to
Ξ ≔ ð0.994 � � �Þjþihþj⊗8 þ ð0.005 � � �Þζ, which satisfies
d1ðΞ; jþihþj⊗8Þ < ε. We denote this CPTP map by Λ.
We next move to Step 3. We identify the system S to S1

and the catalyst C to S2 ⊗ � � � ⊗ S8 ⊗ A, where A is an
auxiliary system spanned by a basis fj1i; j2i;…; j8ig. The
Hamiltonian of A is set to be trivial (i.e., all the states in A
take the same energy). Using Ξ on S1 ⊗ � � � ⊗ S8 intro-
duced above, we define Ξi (i ¼ 1;…; 8) as the reduced
state of Ξ on S1 ⊗ � � � ⊗ Si. We set Ξ0 ≔ 1 ∈ R (i.e., the

(b)(a)

FIG. 2. (a) Schematic of the criterion S∞ðρ0jjρGibbsÞ <
S∞ðρjjρGibbsÞ represented by the dashed line in the x-z plane
of the Bloch sphere. We draw the states inconvertible from ρ
within error ε in gray. (b) Schematic of the criterion
S1ðρ0jjρGibbsÞ < S1ðρjjρGibbsÞ in the x-z plane of the Bloch sphere,
where we draw the convertible and inconvertible states with a
correlated catalyst from ρ in red and gray, respectively. In
particular, there exists a Gibbs-preserving map with the correlated
catalyst converting ρ → ρ0.
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trivial state) for convenience. Using these states, we set the
state of C as

c ≔
1

8

X8

k¼1

ρ⊗k−1 ⊗ Ξ8−k ⊗ jkihkj; ð2Þ

where ρ⊗k−1 is the state of S2 ⊗ � � � ⊗ Sk, and Ξ8−k is now
the state of Skþ1 ⊗ � � � ⊗ S8. The initial state of the
composite system is ρ ⊗ c ¼ ð1=8ÞP8

k¼1 ρ
⊗k ⊗ Ξ8−k ⊗

jkihkj [see Fig. 3(a)]. We now construct the desired CPTP
map as follows: If the auxiliary system A is j8ih8j, then we
apply Λ to S1 ⊗ � � � ⊗ S8, and leave it unchanged other-
wise. Then, we shift the auxiliary system A as j8i → j1i
and jni → jnþ 1i. Through this process, 1=8

P
8
k¼1 ρ

⊗k ⊗
Ξ8−k ⊗ jkihkj is converted into τ0 ¼ ð1=8ÞP8

k¼1 ρ
⊗k−1 ⊗

Ξ9−k ⊗ jkihkj [see Fig. 3(b)]. Remarkably, the partial trace
of τ0 with respect to S8 recovers the initial state of
the catalyst c. In addition, by defining ξl as the reduced
state of Ξ on Sl, the reduced state of τ0 on S8 is expressed
as 1=8

P
8
l¼1 ξl, which is ε close to the desired state

ρ0 ¼ jþihþj because d1ðΞ; jþihþj⊗8Þ < ε. Moreover,
since Λ is a Gibbs-preserving map, the constructed
CPTP map is also Gibbs preserving. Thus, swapping the
two-level systems as Sn → Snþ1 and S8 → S1 after the
above CPTPmap, we arrive at the desired Gibbs-preserving
map: ρ ⊗ c is converted into τ with TrS½τ� ¼ c,
d1ðTrC½τ�; ρ0Þ < ε, and ISCðτÞ < δ. Here, since S
is a two-level system, d1ðτ; ρ0 ⊗ cÞ < ε implies
ISCðτÞ < −ε ln ε − ð1 − εÞ lnð1 − εÞ ¼ 0.056 � � � < 0.06.
Discussion.—The obtained results solve in the positive

the conjecture raised in Refs. [19,25]. Note that Müller [20]
proved this conjecture for classical systems by showing an
elaborate way to explicitly construct a catalyst, which is
completely different from our approach. Thus, our proof
restricted to the classical regime serves as an alternative
proof of Müller’s.
In this work, we have considered Gibbs-preserving maps

as thermodynamic processes instead of thermal operations,
while thermal operations are often regarded as proper

operations in terms of the resource theory of thermo-
dynamics. These two classes of operations are equivalent
in the classical regime [12,46], while some Gibbs-
preserving maps cannot be implemented by thermal oper-
ations in the quantum regime [47]. The original conjecture
of Ref. [19] is about Gibbs-preserving maps, and a stronger
conjecture with quantum thermal operations was raised in
Ref. [20]. However, Refs. [25,48] solved the latter stronger
conjecture in the negative by proving that coherence cannot
be broadcast. In other words, no thermal operation converts
an incoherent initial state to any coherent state even with
the aid of a correlated catalyst. This implies that one should
consider a broader class of operations than thermal
operations in order to enable characterization of state
convertibility by the KL divergence. In the present work,
we focus on Gibbs-preserving maps that can still give a
positive answer to the original conjectures [19,25].
However, we expect that there may be a pathway to reduce
Gibbs-preserving maps to thermal operations in the context
of a correlated catalyst. For example, as considered in
Ref. [27], the assistance of a small amount of coherence
carried by an auxiliary systemmay enable such reduction in
the asymptotic limit (i.e., the large catalyst limit in our
setup). Investigation of such a direction is an important
future problem.
We also note that Müller [20] performs trivialization of

the catalyst Hamiltonian, but we did not. Here, we say a
catalyst trivialized when the Hamiltonian of the catalyst is
trivial. The hardness of trivialization in the fully quantum
regime comes from the fact that merging and splitting states
are irreversible due to decoherence in quantum systems.
Owing to this difficulty, we did not trivialize the catalyst in
the present work.
Besides the correlated classical cases [17,18,20,49], in

some setups of quantum thermodynamics and resource
theories, a single thermodynamic potential with the KL
divergence also appears [4,13,26–28,50–53]. However,
those previous results are different from our result in some
important aspects: Some of them allow small changes in the
catalyst [4] or other external systems [50–53] (instead they
consider more restricted classes of operations compared
to Gibbs-preserving maps), and some others consider
asymptotic (macroscopic) conversion [13,26–28]. It is yet
interesting to see that the same thermodynamic potential
appears in these various setups.
Meanwhile, we can further extend Theorem 1 to general

CPTP maps by employing a similar proof idea. This is
about the quantum counterpart of catalytic d-majorization
(also called relative majorization) [6,8]:
Theorem 3.—Consider four quantum states ρ, ρ0, η, and

η0 of the system S. Then, SðρjjηÞ ≥ Sðρ0jjη0Þ holds if and
only if there exists a catalyst C and its two states c, d, and a
CPTP map which converts η ⊗ d to η0 ⊗ d and ρ ⊗ c to τ
satisfying (i) TrS½τ� ¼ c, (ii) TrC½τ� is arbitrarily close to ρ0,
(iii) the correlation between S and C in τ is arbitrarily small.

(a)

Λ

(b)
(8)

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

A 8 7 6 5 4 3 2 1 87 6 5 4 3 2 1

FIG. 3. Schematic of Step 3 of the proof. (a) The initial state of
the composite SC. The vertical direction represents different
systems S1;…; S8, and the horizontal direction means their
classical mixture. (b) Schematic of how the CPTP map Λ gives
the desired catalytic state conversion.
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We present the proof of this theorem in the Supplemental
Material [30]. This theorem almost solves the conjecture of
Rethinasamy and Wilde [21], who proved the classical
case. The only difference between our result and the
conjecture is that we did not trivialize catalyst c.
Meanwhile, Brandao, and Gour [54] have established

that various resource theories concerning asymptotic state
conversion with a small error are characterized by the KL
divergence. Their result applies to the resource theories of
entanglement, coherence, contextuality, and stabilizer
computation. By employing our technique (in particular,
Step 3 of the proof), we see that the KL divergence also
serves as a single monotone in these single-shot resource
theories with a correlated catalyst. More generally, our
approach developed in the present Letter sheds new light on
single-shot resource theories with a catalyst, as recently
demonstrated in Ref. [55].
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