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If only limited control over a multiparticle quantum system is available, a viable method to characterize
correlations is to perform random measurements and consider the moments of the resulting probability
distribution. We present systematic methods to analyze the different forms of entanglement with these
moments in an optimized manner. First, we find the optimal criteria for different forms of multiparticle
entanglement in three-qubit systems using the second moments of randomized measurements. Second, we
present the optimal inequalities if entanglement in a bipartition of a multiqubit system shall be analyzed in
terms of these moments. Finally, for higher-dimensional two-particle systems and higher moments, we
provide criteria that are able to characterize various examples of bound entangled states, showing that
detection of such states is possible in this framework.
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Introduction.—With the current development of experi-
mental quantum technologies, larger quantum systems with
more and more particles become available, but controlling
and analyzing these systems is complicated. In fact, due to
the exponentially increasing dimension of the underlying
Hilbert space, a complete characterization of the quantum
states or quantum dynamics is quickly out of reach. A key
idea for analyzing large quantum systems is therefore to
perform random measurements or operations, and to
characterize the global quantum system with the help of
the observed statistics. Examples are procedures like
randomized benchmarking for the analysis of quantum
gates [1,2], certain methods for estimating the fidelity of
quantum states [3], or various proposals to perform
variants of state tomography using random measurements
[4–7].
It was noted early that randomized measurements could

also be used to study quantum correlations [8–10]. The
original motivation came from the situation where two parties,
typically called Alice and Bob, share a quantum state but no
common reference frame. This situation has been discussed in
a variety of settings in quantum information processing
[11–14]. Although the determination of the entire quantum
state is impossible in this setting, it may still be analyzed
along the following lines. Alice and Bob perform separate
measurements, denoted by MA and MB, and rotate them
arbitrarily. That is, they evaluate an expression of the form

hMA ⊗ MBiUA⊗UB
¼ tr½ϱABðUAMAU

†
AÞ ⊗ ðUBMBU

†
BÞ�;

ð1Þ

which, of course, depends on the chosen unitary UA ⊗ UB.
The prime idea is to sample random unitaries and consider the
resulting probability distribution of hMA ⊗ MBiUA⊗UB

.
This probability distribution contains valuable information
about the state, and the distribution may be characterized by
its moments

RðrÞ
AB ¼

Z
dUA

Z
dUB½hMA ⊗ MBiUA⊗UB

�r; ð2Þ

where the unitaries are typically chosen according to the Haar
distribution. Clearly, similar moments can be defined for
multiparticle systems.
In recent years, several works proceeded in this direc-

tion. One research line has been started from the estimation
of the state’s purity [15], and then protocols for measuring
entanglement via Rényi entropies have been presented [16]
and experimentally implemented [17]. Very recently, ideas
to estimate the entanglement criterion of the positivity of
the partial transpose (PPT) [18,19] have been introduced
[20,21]. Another research line characterized the relation of
the second moments [22,23] Rð2Þ

AB and those of the margin-
als [24] to entanglement. Recently, higher moments have
been used to characterize multiparticle entanglement
[25,26], and quantum designs have been shown to allow
for a simplified implementation, because the integral in
Eq. (2) can be replaced by finite sums [25,27,28].
Still, the present results along the above research lines

are incomplete in several respects. First, although many
entanglement criteria have been presented, their optimality
is not clear. It would be desirable to use the information
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obtained by randomized measurements most efficiently.
Second, the known results from randomized measurements
allow one to detect highly entangled states only, e.g., states
that are close to pure states. For a long-range impact of the
research program, however, it is vital that weakly entangled
states (e.g., the ones that cannot be detected by the PPT
criterion) can also be analyzed.
The goal of this Letter is to generalize the existing

approaches in two directions: First, we will systematically
consider the moments of the measurement results when
only some of the parties measure. That is, we evaluate the
expressions in Eqs. (1) and (2) for the special case of
MA ¼ 1 or MB ¼ 1, and we call these quantities the
reduced moments RðrÞ

B and RðrÞ
A . Note that this case

effectively corresponds to discarding the measurements
of Alice for RðrÞ

B (respectively, Bob for RðrÞ
A ) such that the

reduced moments can directly be evaluated from the data
taken for measuring RðrÞ

AB. As we will show, in terms of
these reduced moments, improved entanglement criteria
can be designed that are optimal in the sense that if a
quantum state is not detected by them, then there is also a
separable state compatible with the data.
Second, we present a systematic approach to characterize

high-dimensional systems with higher moments RðrÞ
AB. We

show how previously known entanglement criteria [29–31]
can be formulated in terms of moments. With this, we
demonstrate that bound entanglement, which is a weak
form of entanglement that cannot be used for entanglement
distillation and is not detectable by the PPT criterion, can
be also characterized in a reference-frame independent
manner. This shows that the approach of randomized
measurements is powerful enough to characterize the rich
plethora of entanglement phenomena.
Multiparticle correlations for three qubits.—For three

qubits, the measurements MA, MB, and MC may, without
loss of generality, be taken as the Pauli-Z matrix σ3. If we
consider the full or reduced second moments Rð2Þ, the
analysis is simplified by the fact that each integral over
Uð2Þ in Eq. (2) can be replaced by sums over the four Pauli
matrices σ0, σ1, σ2, and σ3. This is because the Pauli
matrices form a unitary two-design, meaning that averages
of polynomials of degree two or less yield identical
results [25,32].
Accordingly, the moments are directly related to the

Bloch decomposition of the three-qubit state ϱABC. Recall
that any three-qubit state can be written as

ϱABC ¼ 1

8

X3
i;j;k¼0

αijkσi ⊗ σj ⊗ σk; ð3Þ

where σ0 ¼ 1 denotes the identity matrix. The full and
reduced second moments can simply be expressed in terms
of the coefficients αijk, and they read

Rð2Þ
ABC¼

1

27

X3
i;j;k¼1

α2ijk; Rð2Þ
AB¼

1

9

X3
i;j¼1

α2ij0; Rð2Þ
A ¼1

3

X3
i¼1

α2i00;

ð4Þ

and similarly for the reduced moments on other parts of the
three-particle system.
Sums of this form have already been considered under

the concept of sector lengths [33–37] and multiparticle
concurrences [38,39]. More precisely, the notion of sector
lengths captures the magnitude of the one-, two-, and
three-body correlations in the state ϱABC, where the
one- and two-body correlations are averaged over all
one- and two-particle reduced states. That is, the sector

lengths Ak are given by A1 ¼ 3ðRð2Þ
A þRð2Þ

B þRð2Þ
C Þ,

A2 ¼ 9ðRð2Þ
AB þRð2Þ

AC þRð2Þ
BCÞ, and A3 ¼ 27Rð2Þ

ABC. Most
importantly, the set of all three-qubit states forms a
polytope in the space of the sector lengths, which has
recently been fully characterized [36]; see also Fig. 1.
To proceed, recall that a state is fully separable if it can

be written as

ϱfs ¼
X
k

pkϱ
A
k ⊗ ϱBk ⊗ ϱCk ; ð5Þ

FIG. 1. Geometry of the three-qubit state space in terms of the
second moments of random measurements or sector lengths. The
total polytope is the set of all states, characterized by the
inequalities Ak ≥ 0, A1 − A2 þ A3 ≤ 1, A2 ≤ 3, and A1 þ A2 ≤
3ð1þ A3Þ [36]. The fully separable states are contained in the
blue polytope, obeying the additional constraint in Eq. (6) in
observation 1. States that are biseparable for some partitions are
contained in the union of the green and blue polytopes,
characterized by the additional equation [Eq. (7)] from observa-
tion 2. In fact, for any point in the green and blue areas, there is a
biseparable state with the corresponding second moments. The
yellow area corresponds to the states violating the best previously
known criterion for biseparable states, A3 ≤ 3 [33–36]. Thus, the
red area marks the improvement of the criterion in observation 2
compared with previous results.

PHYSICAL REVIEW LETTERS 126, 150501 (2021)

150501-2



where the pk form a probability distribution. Now, we can
formulate the first main result of this Letter.
Observation 1.—Any fully separable three-qubit state

obeys

A2 þ 3A3 ≤ 3þ A1 ð6Þ

or, equivalently,

3ðRð2Þ
ABþRð2Þ

ACþRð2Þ
BCÞþ27Rð2Þ

ABC≤1þRð2Þ
A þRð2Þ

B þRð2Þ
C :

This is the optimal linear criterion in the sense that
any other linear criterion for the Ai detects strictly fewer
states.
The proof of this observation, including possible gen-

eralizations to higher-dimensional systems, is given in
Appendix A in the Supplemental Material [40], and the
geometrical interpretation is displayed in Fig. 1.
Violation of Eq. (6) implies that the state contains some

entanglement, but it does not mean that all three particles
are entangled. Indeed, an entangled state may still be
separable with respect to some bipartition. For instance,
if we consider the bipartition AjBC, a state separable with
respect to this bipartition can be written as

ϱAjBC ¼
X
k

qAkϱ
A
k ⊗ ϱBCk ;

where the qAk form a probability distribution, and ϱBCk may
be entangled. Similarly, one can define biseparable states
with respect to the two other bipartitions as ϱBjAC and ϱCjAB.
For these states, we can formulate the following:
Observation 2.—Any three-qubit state that is separable

with respect to some bipartition obeys

A2 þ A3 ≤ 3ð1þ A1Þ ð7Þ

or, equivalently,

3ðRð2Þ
ABþRð2Þ

ACþRð2Þ
BCÞþ9Rð2Þ

ABC≤1þ3ðRð2Þ
A þRð2Þ

B þRð2Þ
C Þ:

This is the optimal criterion in the sense that if the three Ai
obey the inequality, then for any bipartition, there is a
separable state compatible with them.
Again, the proof and the generalizations to higher

dimensions are given in Appendix A [40], and the geometry
is displayed in Fig. 1. We add that we have strong
numerical evidence that Eq. (7) also holds for mixtures
of biseparable states with respect to different partitions, i.e.,
states of the form ϱbs ¼ pAϱAjBC þ pBϱBjAC þ pCϱCjAB,
where the pA, pB, and pC form convex weights.
Nevertheless, we leave this as a conjecture for further
study. More detailed information on the numerical methods
used can be found in Appendix D [40].

Our two observations show that not only the three-body
second moment Rð2Þ

ABC but also the one- and two-body
reduced moments such as Rð2Þ

AB and Rð2Þ
A can be useful for

entanglement detection. In fact, their linear combinations
allow us to detect entangled states more efficiently than
existing criteria [33–36]; see also Appendix A [40]. In
particular, as shown in the Appendix, Eq. (7) can detect
multipartite entanglement for mixtures of Greenberger-
Horne-Zeilinger (GHZ) states and W states (i.e., jGHZi ¼
1ffiffi
2

p ðj000i þ j111iÞ, jWi ¼ 1ffiffi
3

p ðj001i þ j010i þ j100iÞ),
even if two other important entanglement measures, namely
the three-tangle and bipartite entanglement in the reduced
subsystems vanish simultaneously [62].
Optimal criteria for general bipartitions.—In many

realistic scenarios, it is sufficient to detect entanglement
across some fixed bipartition IjĪ of the multiparticle
system. For this task, second moments of randomized
measurements can be used as well: Performing random
measurements at each qubit and considering the second
moments allow one to generalize the moments in Eq. (4) for
the given number of qubits. In turn, these moments allow
one to determine the quantities trðϱ2I Þ, trðϱ2Ī Þ, and trðϱ2Þ for
the reduced states of the bipartition and the global state.
This approach has recently been used in an experiment [17]
where entanglement criteria with the second-order
Rényi entropy S2ðϱXÞ ¼ − log2 trðϱ2XÞ were employed.
The entropic criteria for separable states read S2ðϱXÞ ≤
S2ðϱÞ for X ¼ I; Ī; if this is violated, then ϱ is entangled
[16,63,64].
Using our methods, we can show that this approach is

optimal. To formulate the result, we assume that both sides
of the bipartition have the same number of qubits. Then, we
recall that any bipartite state can be written as

ϱAB ¼ 1

d2
Xd2−1
i;j¼0

tijλi ⊗ λj; ð8Þ

where λ0 ¼ 1 denotes the identity matrix, and λi are the
Gell-Mann matrices [65,66]. This is the decomposition of
ϱAB using the basis of Hermitian, orthogonal, and traceless
matrices; i.e., λi ¼ λ†i , tr½λiλj� ¼ dδij, and tr½λi� ¼ 0 for
i > 0. These properties are the natural extensions of Pauli
matrices for SUð2Þ to SUðdÞ, which are used in particle
physics [67]. The quantities of interest are

A2 ¼
Xd2−1
i;j¼1

t2ij; AA
1 ¼

Xd2−1
i¼1

t2i0; AB
1 ¼

Xd2−1
i¼1

t20i: ð9Þ

We also define A1 ¼ AA
1 þ AB

1 , which allows us to
recover the purities via trðϱ2ABÞ ¼ ð1þ A1 þ A2Þ=d2 and
trðϱ2AÞ ¼ ð1þ AA

1 Þ=d. It is interesting that, although the λi
are not directly linked to a quantum design, the quantities
AA
1 , A

B
1 , and A2 are also second moments of a measurement

of the observables λi in random bases. The proof follows
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from a slight extension of the arguments given in Ref. [23];
see Appendix B [40]. This opens another possibility for an
experimental implementation besides making randomized
Pauli measurements on all the qubits individually. Now, we
can formulate the following:
Observation 3.—Any two-qudit separable state obeys the

relation

A2 ≤ d − 1þ ðd − 1ÞAA
1 − AB

1 ; ð10Þ

as well as the analogous one with parties A and B
exchanged. This is equivalent to the criterion S2ðϱXÞ ≤
S2ðϱABÞ for X ∈ fA;Bg. This criterion is optimal,
in the sense that if the inequality holds for AA

1 , A
B
1 , and

A2, then there is a separable state compatible with these
values.
The criterion itself was established before, and so we

only have to prove the optimality statement. This is done in
Appendix A [40], where we explicitly construct the
polytope of all admissible values of AA

1 , A
B
1 , and A2 for

general and separable states in any dimension. The unfor-
tunate consequence of the optimality statement is that any
PPT entanglement cannot be detected by the quantities AA

1 ,
AB
1 , and A2 because the entropic criterion is strictly weaker

than the PPT criterion [68]. In the following, we will
overcome this obstacle by developing a general criterion
for entanglement using higher moments of randomized
measurements.
Higher-dimensional systems.—In higher-dimensional

systems, different forms of entanglement exist, e.g., entan-
glement of different dimensionality [69,70] or bound
entanglement [71–74]. The previously known criteria for
randomized measurements face serious problems in this
scenario. First, criteria using purities, such as observation 3,
can only characterize states that violate the PPT criterion,
and hence miss the bound entanglement. Second, although
the notion of randomized measurements as defined in
Eqs. (1) and (2) is independent of the dimension, many
results for qubits employ the concept of a Bloch sphere,
which is not available for higher dimensions, where not all
observables are equivalent under randomized unitaries.
Reference [23] showed that some results for qubits are
also valid for higher dimensions as long as only second
moments are considered, but these connections are defi-
nitely not valid for higher moments.
To overcome these problems, we first note that a general

observable is characterized by its eigenvectors, determining
the probabilities of the outcomes, and the eigenvalues,
corresponding to the observed values. For computing the
moments as in Eq. (2), the eigenvectors do not matter due to
the averaging over all unitaries. The eigenvalues are
relevant, but they may be altered in classical postprocess-
ing: Once the frequencies of the outcomes are recorded, one
can calculate the moments in Eq. (2) for different assign-
ments of values to the outcomes.

So, the question arises of whether one can choose the
eigenvalues of an observable in a way that the moments in
Eq. (2) are easily tractable. For instance, it would be
desirable to write them as averages over a high-dimensional
sphere (the so-called pseudo-Bloch sphere). The reason is
that several entanglement criteria, such as the computable
cross norm or realignment criterion [29,30] and the de
Vicente (dV) criterion [31], also make use of a pseudo-
Bloch sphere [75]. Surprisingly, the desired eigenvalues
can always be found:
Observation 4.—Consider an arbitrary observable in a

higher-dimensional system. Then, one can change its
eigenvalues such that, for the resulting observable Md,

the second and fourth momentsRðrÞ
AB in the sense of Eq. (2)

equal (up to a factor) a moment SðrÞ
AB that is taken by an

integral over a generalized pseudo-Bloch sphere. That is,

SðrÞ
AB is given by

SðrÞ
AB ¼ N

Z
dα1

Z
dα2½trðϱABα1 · λ ⊗ α2 · λÞ�r; ð11Þ

where αi denote ðd2 − 1Þ-dimensional unit real vectors
uniformly distributed from the pseudo-Bloch sphere, and
λ ¼ ðλ1; λ2;…; λd2−1Þ is the vector of the Gell-Mann
matrices. Furthermore, N is a normalization factor.
The proof and the detailed form of Md are given in

Appendix B [40]. To give a simple example, for d ¼ 3, one
may measure the standard spin measurement Jz and assign
the values αþ=γ, α−=γ, and 2β=γ instead of the standard
values �1 and 0 to the three possible outcomes, where

α� ¼ �3 − β, β ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 2

ffiffiffiffiffi
15

pp
, and γ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ ffiffiffiffiffi

15
pp

.
Note that the resulting observable is also traceless.
It remains to formulate separability criteria in terms of the

second and fourth moments SðrÞ
AB. For that, we employ the dV

criterion [31], details of the calculations are given in
Appendix B [40]. From these results, it also follows that
the dV criterion can be evaluated via randomized measure-
ments for all dimensions. First, it turns out that Sð2Þ

AB
and Sð4Þ

AB can, for any dimension, be simply expressed as
polynomial functions of the subset of the two-body corre-
lation coefficients tij with 1 ≤ i, j ≤ d2 − 1 in Eq. (8), where
we also call this submatrix Ts. Second, the moments SðrÞ

AB are
by definition invariant under orthogonal transformations of
the matrix Ts. On the other hand, the dV criterion reads that
two-qudit separable states obey kTsktr ≤ d − 1, and this is
also invariant under the named orthogonal transformations.
Third, for a fixed value of the second moment Sð2Þ

AB, we can
maximize and minimize the fourth moment Sð4Þ

AB under the
constraint kTsktr ≤ d − 1. This task is greatly simplified by
orthogonal invariance; in fact, we can assume Ts to be
diagonal. This leads to simple, piecewise algebraic sepa-
rability conditions for arbitrary dimensions d.
The results for d ¼ 3 are shown in Fig. 2. The outlined

procedure gives an area that contains all values of Sð2Þ
AB

PHYSICAL REVIEW LETTERS 126, 150501 (2021)

150501-4



and Sð4Þ
AB for separable states. Most importantly, various

bound entangled states can be detected [76–79]. Also, for
d ¼ 4, bound entanglement can be detected; details are
given in Appendix C [40].
Conclusion.—We have developed methods for character-

izing quantum correlations using randomized measure-
ments. On the one hand, our approach led to optimal
criteria for different forms of entanglement using the
second moments of the randomized measurements. On
the other hand, we have shown that using fourth moments
of randomized measurement detection of bound entangle-
ment as a weak form of entanglement is possible. This
opens a new perspective for developing the approach
further because all previous entanglement criteria were
only suited for highly entangled states.
There are several directions for further research. First, on a

more technical level, the employed separability criterion [31]
can be derived from an approach toward entanglement using
covariance matrices [80]. Connecting randomized measure-
ments to this approach will automatically lead to further
results, e.g., on the quantification of entanglement [81].
Second, for experimental studies of the criteria presented in
this Letter, a scheme for the statistical analysis of finite data
(e.g., using the Hoeffding inequality or other large deviation
bounds) is needed. Finally, our results encourage develop-
ment of the characterization of other quantum properties
using randomized measurements, such as spin squeezing or
the quantum Fisher information in metrology.
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