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We present a model-independent measure of dynamical complexity based on simulation of complex
quantum dynamics using stroboscopic Markovian dynamics. Tools from classical signal processing enable
us to infer the Hilbert space dimension of the complex quantum system evolving under a time-independent
Hamiltonian via pulsed interrogation. We illustrate this using simulated third-order pump-probe
spectroscopy data for exciton transport in a toy model of a coupled dimer with vibrational levels,
revealing the dimension of the singly excited manifold of the dimer. Finally, we probe the complexity of
excitonic transport in light harvesting 2 (LH2) and Fenna-Matthews-Olson (FMO) complexes using data
from two recent nonlinear ultrafast optical spectroscopy experiments. For the latter we make model-
independent inferences that are commensurate with model-specific ones, including the estimation of the
fewest number of parameters needed to fit the experimental data and identifying the spatial extent, i.e.,
delocalization size, of quantum states participating in this complex quantum dynamics.
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Some of the most challenging yet exciting entities at the
vanguard of our understanding in the physical sciences are
complex quantum systems, ranging from molecular proc-
esses on the femtosecond timescale, such as many-body
coherent dynamics in semiconductors [1], exciton transport
processes in photosynthetic light harvesting complexes [2],
ultrafast isomerization in rhodopsin which is the primary
photochemical event in vision [3], to various processes in
atomic, molecular, condensed matter, chemical, laser, and
nuclear physics [4]. The “complexity” of any quantum
dynamics must depend on the dimension of the Hilbert
space which the process explores. Identifying this dimension
is precisely the challenge since typical complex quantum
systems involve an extended environment coupled to a
finite-dimensional central core—such as vibrational levels
interacting with excitons in light-harvesting complexes,
resulting in, in principle, an infinite-dimensional Hilbert
space. In practice, however, complex quantum dynamics
often explore a small part of the environment around the
central core resulting in an effective finite-dimensional
Hilbert space. It is this that we seek to identify in this work.
The term “simulation complexity” was introduced in a

model-dependent approach that used one-dimensional ten-
sor networks to approximate the system-environment joint
state [5]. The bond dimension of these networks was
interpreted as the square of the effective environment
dimension that can simulate open system dynamics. In
another recent work, a fluctuation-dissipation theorem for
chaotic systems at high temperatures was established,
linking the time-averaged fluctuation of a probe observable
to the average decay rate of the test qubit by a factor that

depends on the effective Hilbert space dimension of the
system and environment [6].
It has been shown that the dimensionality of the effective

system-environment quantum state can be bounded in a
model-independent way using tools from the theory of
classical dynamical systems and signal processing on time
series of experimental data [7–11]. This method of
delays, as it is often called, computes the size of a
fictitious, extended quantum system evolving under a fixed
Markovian map that reproduces the given dynamics. We
refer to this dimension-based classification of dynamical
complexity as model-independent simulation complex-
ity (MISC).
Similar to the method of delays, the reproduction of

dynamics in a model-independent manner using a fixed
Markovian map in the generalized probabilistic framework
has also been achieved via other tools of subspace
identification [12]. These methods have provided model-
independent characterizations of the Hilbert space
dimension of up to three engineered qubits [8,9,12].
Unfortunately, MISC based on the method of delays (or
other subspace identification techniques) as developed in
previous works cannot be applied directly to large families
of experimental scenarios without accounting for and
filtering out the transient effects of the time-dependent
interactions. Prominent among them are linear and non-
linear spectroscopies where finite time-dependent inter-
actions between pulses and the complex quantum systems
are used to probe complex dynamics.
In this work, we develop MISC for use on time-

integrated data generated from finite time-dependent
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interactions. This allows us to overcome the transient
effects of the time-dependent pulses. Next, we define, in
a model-independent manner, MISC for noisy signals with
signal-to-noise ratio bounded by ϵ (referred to as MISCϵ).
Finally, we evaluate MISCϵ for simulated and experimental
ultrafast nonlinear spectroscopy data from exciton transport
in coupled dimers, and the light harvesting 2 (LH2) and
Fenna-Matthews-Olson (FMO) complex, respectively. For
the latter complex quantum dynamics, we make some
model-independent inferences that are commensurate with
model-specific inferences and electronic structure calcu-
lations. This suggest a role for MISCϵ in understanding
challenging complex quantum systems.
Quantum system interrogated by pulses.—Suppose the

Hamiltonian governing the quantum system is

ĤðtÞ ¼ Ĥ0 þ V̂ðtÞ; ð1Þ

where V̂ðtÞ ¼ ηV̂
P

N
k¼1 gðt − TkÞ, η being the strength

of system-pulse coupling, gðtÞ is the pulse envelope,
T ¼ fT1;…; TNg is the set of central times of the N
pulses, and V̂ is the interaction operator. ĤðtÞ encompasses,
among other experimental scenarios, linear and nonlinear
spectroscopy of complex quantum systems. In all these
cases, the time-integrated signal is

EðTÞ ¼
Z

∞

−∞
dtIhψðtÞjV̂IðtÞjψðtÞiI; ð2Þ

where jψðtÞiI ¼ eiĤ0tjψðtÞi, V̂IðtÞ ¼ eiĤ0tV̂e−iĤ0t are
the interaction-picture state and evolution operator,
respectively.
Assuming the pulses do not overlap (the semi-impulsive

limit), gðt − TkÞgðt − TlÞ ¼ 0 ∀ Tk ≠ Tl ∈ T, and the
interaction operator and system Hamiltonian do not
commute ½Ĥ0; V̂� ≠ 0, the time-integrated signal is (see
Supplemental Material [13], Sec. A)

EðTÞ ¼ iℏ
X∞
k;l¼0

Xk
m¼0

Ek−m;lþmþ1ðTÞ; ð3Þ

where EklðTÞ ¼ Ihψkð∞Þjjψ lð∞ÞiI is the overlap of the
interaction-picture asymptotic wave functions, defined as
jψ ðnÞðtÞiI ¼ Ûnðt; t0Þjψ0i, where

ÛIðt;t0Þ¼
X∞
m¼0

Ûnðt;t0Þ;

Ûnðt;t0Þ¼
�
− i
ℏ

�
n
Z

t

t0

dt1…
Z

tn−1

t0

dtnV̂Iðt1Þ…V̂IðtnÞ: ð4Þ

To simplify the subsequent exposition, we focus on the
signal as the function of a single time difference
δTα ¼ Tαþ1 − Tα, in which case each term in Eq. (3) is
of the form (see Supplemental Material [13], Sec. A)

EklðδTαÞ ¼
X
λ

cklðλÞχabcdðδTαÞ þ const; ð5Þ

λ ¼ fλa; λb; λc; λdg is a quadruplet of indices, each index-
ing a complete set of basis vectors

P
a jλaihλaj ¼ I and so

on, and χabcdðtÞ ¼ hλajeiĤ0tjλbihλcje−iĤ0tjλdi are process
tensor elements corresponding to unitary evolution effected
by Hamiltonian Ĥ0. The coefficients cklðλÞ are defined in
Supplemental Material [13], Sec. A.
Using Eqs. (3) and (5), the time-integrated signal is, up to

an additive constant,

EðδTαÞ ¼ iℏ
X∞
k;l¼0

Xk
m¼0

X
λ

ck−m;lþmþ1ðλÞχabcdðδTαÞ; ð6Þ

a linear combination of process tensor elements that evolve
via the time-independent Hamiltonian Ĥ0 only.
Importantly, this form allows us to sidestep the additional
complexity imposed by transient effects of the time-
dependent interaction Hamiltonian V̂ðtÞ and instead cap-
ture the complexity of quantum dynamics induced by Ĥ0

only. The form of the signal in Eq. (6) is now ready for
discrete time series analysis using the method of delays to
bound the complexity of quantum dynamics. This method
of delays can also be applied directly to transient time series
of expectation values—however, this can lead to identi-
fication of spuriously high complexity, as discussed in
detail in Supplemental Material [13], Sec. B.
Method of delays: Consider a finite stream of data

A≡ AðkÞ ∈ R; k ∈ NK ≡ f0; 1;…; Kg, recorded as a dis-
crete function of a relevant dynamical control variable
indexed by k, typically time. This encompasses EðδTαÞ
discussed previously (where the dynamical control variable
would be the time delay between successive pulses). A
numerical value of MISC can be extracted from the data by
invoking two related results from the method of delays in
quantum information theory [7–9]. First, given a discrete
bounded time series, there always exist an initial quantum
state ρ̂0, a fixed generator P of stroboscopic Markovian
dynamics [8,14–17], and quantum observable Â acting on
Hilbert space of dimension rankðMÞ þ 2 where

Mmn ¼ Aðmþ n − 2Þ; m; n ∈ f1;…; Kg; ð7Þ

such that AðkÞ¼TrðÂPkρ0Þ∀k∈NK . The ⌈K=2⌉×⌈K=2⌉-
sized square matrix M is referred to as the time delay (TD)
matrix, giving the eponymous method [7]. Second, if the
evolution of a given quantum state is in fact known
beforehand to be given by the stroboscopic Markovian
map generated by Q [so that AðkÞ ¼ Tr½ÂQkρ̂0�],
the inequality

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rankðMÞp

≤ d holds, where d is the
Hilbert space dimension of relevant dynamics. Combining
both results [7], for arbitrary dynamics,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rankðMÞ

p
≤ d ≤ rankðMÞ þ 2; ð8Þ

where d is interpreted as the dimension of the smallest
quantum system that can simulate the complex, possibly
non-Markovian, quantum dynamics using homogeneous,
stroboscopic Markovian dynamics. As both the upper and
lower bounds of d are model-independent functions of the
rank of the delay matrix, we define

MISC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rankðMÞ

p
ð9Þ

as the model-independent simulation complexity (MISC).
The method of delays can be further used to explicitly
construct simulated quantum (or otherwise) realizations of
open system dynamics [9–11], which we do not discuss any
further because our interest here lies in the evaluation of
simulation complexity only.
For the TD matrix ME obtained from signal EðδTαÞ in

Eq. (6), a tighter bound corresponding to unitary evolutions [8]

rankðMEÞ ≤ d20 þ d0 − 1; ð10Þ

follows, where d0 is the dimension of the subspace of Ĥ0 on
which V̂ acts.
MISC with relative error.—In practice, AðkÞ (or indeed

any signal), is inevitably contaminated by noise. This
affects the computation of MISC as a TD matrix M
constructed from a noisy AðkÞ, irrespective of the length
or resolution of the time series, tends to have full rank.
Instead, we evaluate the numerical rank of M which
requires, first and foremost, a meaningful delineation of
the singular value spectrum of M into noisy and non-noisy
components. The singular value spectrum is defined by the
decomposition M ¼ P⌈K=2⌉

i¼1 O1ΣiO2, where O1;2 are
orthogonal matrices and Σi are the singular values in
descending order. In order to evaluate numerical rank,
the singular values attributed to noise are set to zero [18].
To this end, consider the reconstructed signal time series

Ar formed from the TD matrix Mr ¼
P

r
i¼1 O1ΣiO2, and

define the root mean square perturbation as

Δr ¼
kAr − Ak2

kAk2
; ð11Þ

where k · k2 is the 2-norm, defined as kAk2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
K
k¼0 jAðkÞj2

q
. Starting with the intuition that noise will

only contribute to small values in the singular value
spectrum [20] of the delay matrix M, we define the
MISC with relative error ϵ as

MISCϵ ¼
ffiffiffiffi
R

p
; where R ¼ r∶Δr < ϵ < Δr−1 ð12Þ

for r ∈ f1;…; ⌈K=2⌉g. Here, ϵ captures the relative error
with which the dynamics captured by the discrete time

series AðkÞ are reproduced by the stroboscopic Markovian
simulator. The choice of ϵ is determined by the signal-
to-noise ratio (SNR) in AðkÞ which sets the meaningful
precision to which it is reproduced. For numerical simu-
lations, ϵ is proportional to the precision of the numerical
solver employed, whereas for experimental data it is
inversely proportional to its SNR.
An important consideration in the evaluation of MISCϵ is

its dependence on the length and resolution of the time
series—K data points can reveal a maximum simulation
complexity of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
⌈K=2⌉

p
, and excessive coarse graining of

observations progressively reduces the computed MISCϵ.
Depending on the complex quantum system at hand there
may be an insufficient amount of data, which may pose a
challenge in certain experiments [8]. This is indeed
revealed in a single-molecule spectroscopy experiment
we analyze in a later section. It is possible to use the
Nyquist sampling theorem (which dictates that the mini-
mum sampling rate that fully reconstructs a finite-band-
width continuous signal is twice its highest frequency
component) may be used to estimate the appropriate
sampling rate needed to evaluate a meaningful MISCϵ.
However, for simulated data in the following sections, we
evaluate MISCϵ by directly checking for its stability against
changes in duration and sampling rate of the signal.
As expected of any reasonable measure of simulation

complexity, MISCϵ also depends on the tolerance up to
which we seek to reproduce the complex quantum system
dynamics. As is also expected, Eq. (12) shows that ceteris
paribus, MISCϵ is a monotonically decreasing function of
ϵ. This is illustrated for the Jaynes-Cummings model in
Fig. C.2, discussed in Supplemental Material [13], Sec. C.
We also evaluate MISCϵ for population and coherence
dynamics in the spin boson model (Supplemental Material
[13], Sec. E), a bona fide open system governed by time-
independent Hamiltonian dynamics.
MISCϵ for simulated and experimental nonlinear spec-

troscopy data.—We now evaluate the model-independent
simulation complexity with relative error ϵ—MISCϵ—for
excitonic transport in photosynthetic light harvesting com-
plexes [2]. These dynamics are driven by strong exciton-
phonon interactions which render them complex quantum
systems, and are most fruitfully studied using ultrafast
nonlinear spectroscopy [2,21–25] for which the recorded
signal is of the form obtained in Eq. (6). Therefore, MISCϵ

for these complex systems can be obtained precisely
as for the open systems studied in Supplemental
Material [13], Secs. C and E, except that the TD matrices
are constructed using the time-integrated signal EðδTαÞ
recorded as a function of δTα and that the tighter lower
bound of Eq. (10) holds.
Simulated pump-probe spectroscopy of coupled dimer.—

The strong exciton-phonon interaction in photosynthetic
light harvesting complexes is often modeled using the
Frenkel-Holstein Hamiltonian ĤFH¼ ĤexcþĤphþĤexc−ph
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where the successive terms denote the exciton, phonon, and
interaction Hamiltonians. For a dimer

Ĥexc ¼
X
i¼1;2

εiĉ
†
i ĉi þ κðĉ†1ĉ2 þ ĉ†1ĉ2Þ; ð13Þ

Ĥph ¼
X
i¼1;2

ℏωiðd̂†i d̂i þ 1=2Þ; ð14Þ

Ĥexc-ph ¼ −
X
i¼1;2

ℏωigiĉ
†
i ĉiðd̂†i þ d̂iÞ; ð15Þ

where εi are the on-site energies, κ is the strength of dipole-
dipole coupling between the sites 1 and 2, fĉ†i ; ĉig are the
creation-annihilation operator pair for the two sites,
fd̂†i ; d̂ig are the phonon creation-annihilation operator pair
for vibrational bath coupled to each site, ωi are the phonon
frequencies for the vibrational ladders, and gi are the
individual strengths of the phonon-exciton coupling.
Table I displays the MISCϵ evaluated using the simulated

signal generated from a sequence of four distinct pump-
probe experiments [26] used to investigate singly excited
manifold (SEM) dynamics of the dimer, for a varying
number of phonons in the vibrational bath (See
Supplemental Material [13], Sec. G for details). Each
component signal is aggregated over 300 molecules with
varying dipole orientations corresponding to individual
sites but fixed relative orientation of 40°. In order to
simultaneously take into account the four distinct signals
that are recorded, we construct TD tensors (in place of TD
matrices) whose spanned space will be bound by the same
inequality as Eq. (8). The simulation complexity is then set
to be the maximum of MISCϵ corresponding to all possible
combinations of the signal components. As this is a
simulation, the precise dimension of the complex quantum
system’s Hilbert space is known. MISCϵ is expectedly
found to be always less than the Hilbert space dimension of
the dimer SEM which is probed by the pump-probe
experiment as presented in Table I. Furthermore, lower
values of ϵ lead to larger complexity.

Experimental single-molecule pump-probe spectroscopy
of the LH2 complex.—We evaluate MISCϵ for excitonic
transport in LH2 complexes using experimental data
resulting from the excitation of single LH2 molecules with
two phase-coherent ultrafast pulses [21]. The experiment
was designed to explore quantum coherent population
transfer over varying pathways in LH2 complexes. The
time series, constructed from 17 data points, yields a full-
rank TD matrix for ϵ ¼ 10−1, meaning MISCϵ¼10−1 ¼ 3.0.
This suggests that more data points are required to mean-
ingfully quantify the simulation complexity of excitonic
pathways in LH2 complexes.
Experimental 2D electronic spectroscopy of FMO com-

plex.—Finally, we evaluate MISCϵ for excitonic transport
in the FMO complex using experimental data from polari-
zation-controlled 2D electronic spectroscopy [22]. The
original experiment uses two distinct configurations of
polarizations of the pulses—a sequence of four all-parallel
(AP) pulses (h0°; 0°; 0°; 0°i) and the double-crossed (DC)
sequences of pulses (h45°;−45°; 90°; 0°i). The experiment
is designed to study both the short-lived excitonic coher-
ence as well as the long-lived vibronic coherence of FMO
dynamics at 77 K, recorded over several picoseconds. The
spectra is generated as a sequence (for different population
times t2) of 2D plots of the complex emitted field, as a
function of the excitation and detection energies (denoted
by the wave numbers ν1 and ν3 here). The real and
imaginary components of the emitted field are used to
construct the time series and the evaluated MISCϵ are
presented in Fig. 1.
Some observations are in order. First, the choice of

different ϵ for the AP and DC data is motivated by the
different SNRs in the two experiments. DC experiments

TABLE I. MISCϵ for ϵ ¼ 10−1 and 10−4 calculated from TD
tensors constructed out of aggregate signals corresponding to
2800 time delays, chosen uniformly between 0.5 and 6.098 ps for
pump-probe spectroscopy of dimer molecules. The dimer param-
eters are taken to be those of the allophycocyanin (APC)
molecule (See Supplemental Material [13], Sec. G).

No. of Phonons MISCϵ¼10−1 MISCϵ¼10−4 SEM dimension

0 1.41 1.73 2
1 1.73 3.74 4
2 2.82 6.40 9
3 8.48 13.30 16
4 11.74 21.61 25

(a) AP Sequence [  = 0.1]
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(b) DC Sequence [  = 0.7]
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FIG. 1. Heat maps of MISCϵ for (a) AP (ϵ ¼ 0.1) and (b) DC
(ϵ ¼ 0.7) pulse sequences for excitonic transport in the FMO
complex using experimental data from polarization-controlled 2D
electronic spectroscopy [22]. Each map is composed of a 100 ×
100 grid of (ν1, ν3) points. Each point is generated from the time
series of the complete rephasing signal Ẽð3Þðν1; t2; ν3Þ, where ν1
and ν3 are proportional to the excitation and detection energies,
and the complex emitted signal field is recorded (a) over 2.4 ps
for the AP sequences, and (b) over 2.9 ps for DC sequences, each
sampled every 20 fs. The cross peaks for both pulse sequences are
marked with white boxes on the map.
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have lower noise [27], but also detect smaller signals
resulting in a lower SNR compared to the AP experiments.
Indeed, MISCϵ for varying ϵ for the DC pulse sequence
helps reveal the noise floor in the data, providing ϵ its
physical interpretation (See Supplemental Material [13],
Sec. H). Second, the AP MISCϵ map has a diagonal valley
of low simulation complexity which subsumes the vicin-
ities of the cross peaks linking the two lowest energy
excitons, where particularly prominent oscillations were
noted in the original study [22], specifically the AP2;1
peak that corresponds exclusively to ground state vibra-
tions. Third, the AP data reveal slightly higher complexity
than the DC data as shown by the former’s lighter shade.
This is commensurate with the design of the DC experi-
ment that suppresses some of the Liouville pathways
present in the AP data to reveal certain weaker ones.
Finally, a MISCϵ of 2 across most of the DC map shows
that the intermolecular excitonic coherence effectively
explores a two-dimensional Hilbert space, while the
intramolecular vibrational motion that dominates the
AP data involves no more than 3 Hilbert space dimen-
sions. In conjunction with the fact that the FMO is
constituted of identical bacteriochlorophyll a molecules,
this suggests that the excitonic dynamics is fairly localized
spatially, in qualitative agreement with electronic struc-
ture calculations [28].
The evaluated simulation complexity, rounded off to

⌈MISCϵ⌉, corresponds to the dimension of the smallest
quantum system that can possibly reproduce measured
dynamics of complex systems with relative error ϵ. This
allows us to estimate the fewest number of parameters
needed to reproduce the measured signal. To describe
unambiguously stroboscopic Markovian dynamics on a
Hilbert space of dimension d, one would require 3d2 þ
d − 3 real parameters to define the initial quantum state, the
map generating stroboscopic Markovian dynamics as well
the Hermitian observable whose expectation is used to
reproduce the signal time series. Using the computed
⌈MISCϵ⌉ for the cross peaks [which is 3 for both the
AP cross peaks in Fig. 1(a) and DC cross peaks in
Fig. 1(b)], our framework predicts a minimum of 27 real
parameters are required for both cross peaks of the AP and
DC sequences. This compares with 24 parameters for AP
cross peaks and 20 parameters for DC cross peaks used in
the original study [22].
Conclusions and discussion.—We have developed a

model-independent framework to quantify the dynamical
complexity of quantum systems via MISCϵ that can be
applied directly to experimental data stemming from
experiments performed on complex systems. The model
independence offers unambiguous interpretation in terms
of the minimum number of parameters needed to simulate
these experimental data using stroboscopic Markovian
dynamics up to a desired relative error ϵ. We have
illustrated this through numerically generated data from

simple theoretical models as well as experimental data from
nonlinear spectroscopy experiments of complex biological
molecules.
The general nature of the MISC framework means that it

can potentially be applied to diverse physical system
beyond light harvesting complexes such as spectroscopic
investigations of exciton dynamics in molecules, polymers,
semiconductors, and ion chains using both classical and
quantum light. The MISCϵ dimension inferred independ-
ently of any model can serve as the first quantity in
understanding complex quantum systems. It can also be
used to develop more elaborate models or compared to
those from other, model-dependent recipes [5,6] to adju-
dicate the latter’s viability. The full potential of our work
can hence only be realized by applying it to data from
future experiments on complex systems. A particularly
relevant instance is determining the extent of certain
complex quantum dynamics in physical space. As many
of these systems, such as pigment-protein complexes, are
constituted of simple molecular units, the Hilbert space
dimension can provide an estimate of the number of units,
and thus the spatial extent of the eigenstates participating in
particular dynamics, aiding complicated electronic struc-
ture calculations [28,29].
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[3] D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni,
D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A.
Mathies, M. Garavelli, and G. Cerullo, Conical intersection
dynamics of the primary photoisomerization event in vision,
Nature (London) 467, 440 (2010).

[4] V. M. Akulin, Dynamics of Complex Quantum Systems
(Springer, Dordrecht, 2014).

[5] I. A. Luchnikov, S. V. Vintskevich, H. Ouerdane, and S. N.
Filippov, Simulation Complexity of Open Quantum
Dynamics: Connection with Tensor Networks, Phys. Rev.
Lett. 122, 160401 (2019).

PHYSICAL REVIEW LETTERS 126, 150402 (2021)

150402-5

https://doi.org/10.1002/lpor.201800171
https://doi.org/10.1002/lpor.201800171
https://doi.org/10.1146/annurev-physchem-040214-121713
https://doi.org/10.1038/nature09346
https://doi.org/10.1103/PhysRevLett.122.160401
https://doi.org/10.1103/PhysRevLett.122.160401


[6] C. Nation and D. Porras, Ergodicity probes: Using time-
fluctuations to measure the Hilbert space dimension,
Quantum 3, 207 (2019).

[7] M.M. Wolf and D. Perez-Garcia, Assessing Quantum
Dimensionality from Observable Dynamics, Phys. Rev.
Lett. 102, 190504 (2009).

[8] A. Strikis, A. Datta, and G. C. Knee, Quantum leakage
detection using a model-independent dimension witness,
Phys. Rev. A 99, 032328 (2019).

[9] J. Helsen, F. Battistel, and B. M. Terhal, Spectral quantum
tomography, npj Quantum Inf. 5, 74 (2019).

[10] J. Zhang and M. Sarovar, Quantum Hamiltonian Identifi-
cation from Measurement Time Traces, Phys. Rev. Lett.
113, 080401 (2014).

[11] J. Zhang and M. Sarovar, Identification of open quantum
systems from observable time traces, Phys. Rev. A 91,
052121 (2015).

[12] R. S. Bennink and P. Lougovski, Quantum process
identification: A method for characterizing non-Markovian
quantum dynamics, New J. Phys. 21, 083013 (2019).

[13] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.126.150402 for more details.

[14] V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin, and V.
Bužek, Thermalizing Quantum Machines: Dissipation and
Entanglement, Phys. Rev. Lett. 88, 097905 (2002).

[15] M. Ziman and V. Bužek, All (qubit) decoherences:
Complete characterization and physical implementation,
Phys. Rev. A 72, 022110 (2005).

[16] A. Sone and P. Cappellaro, Exact dimension estimation of
interacting qubit systems assisted by a single quantum
probe, Phys. Rev. A 96, 062334 (2017).
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