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Transport measurements through a few-electron circular quantum dot in bilayer graphene display
bunching of the conductance resonances in groups of four, eight, and twelve. This is in accordance with the
spin and valley degeneracies in bilayer graphene and an additional threefold “minivalley degeneracy”
caused by trigonal warping. For small electron numbers, implying a small dot size and a small displacement
field, a two-dimensional s shell and then a p shell are successively filled with four and eight electrons,
respectively. For electron numbers larger than 12, as the dot size and the displacement field increase, the
single-particle ground state evolves into a threefold degenerate minivalley ground state. A transition
between these regimes is observed in our measurements and can be described by band-structure
calculations. Measurements in the magnetic field confirm Hund’s second rule for spin filling of the
quantum dot levels, emphasizing the importance of exchange interaction effects.
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Few-electron quantum dots have been studied in various
semiconductors, such as InGaAs [1,2], GaAs [3], InAs
[4,5], or silicon [6–8]. Investigation of their ground and
excited states, and of their addition spectra led to a
comprehensive understanding of orbital and spin degener-
acies, and hence enabled the implementation of solid state
qubits [9–12]. For vertical quantum dots etched into a
circular geometry, shell filling and spin filling according to
Hund’s rules was observed [1].
A relatively new and promising material for quantum dot

qubits is graphene [13]. Almost 99% of the carbon atoms
have zero net nuclear spin-reducing hyperfine interactions
compared to III-V semiconductors. Furthermore, carbon is
a light element with reduced spin-orbit effects even
compared to silicon [14]. These properties promise coher-
ence times for qubits in graphene exceeding those of
current semiconductor qubits. Because of the recent
improvements in fabrication techniques for graphene nano-
structures, few electron or few hole quantum dots have been
realized in bilayer graphene [15–23] that are comparable in
quality to the best devices in GaAs.
However, the quantum dots’ ground and excited states,

and their addition spectra are not yet fully understood.
Charge carriers in large-area bilayer graphene devices
possess twofold valley and twofold spin degrees of free-
dom, as well as a nontrivial minivalley band structure due
to trigonal warping [24–27]. Increasing the displacement
field perpendicular to the bilayer graphene sheet increases
the induced band gap and enhances the depth of the three
minivalleys formed around the K and K0 points [15,26,27].

Relevance of these minivalleys for low-energy states in
quantum dots has so far been predicted only theoreti-
cally [28].
Here, we experimentally investigate the effects of trigo-

nal warping in a nearly circular quantum dot in bilayer
graphene. Starting from the empty quantum dot we observe
a successive bunching of four, eight, and twelve conduct-
ance resonances. We attribute these bunchings to the
transition from a level scheme given by two-dimensional
s and p shells for the first electrons, to a level scheme
dominated by minivalleys with threefold degeneracy for
more than twelve electrons. Theoretical band-structure
calculations confirm this transition and are in good agree-
ment with our experimental observations. The circularity,
the size, and the band gap of the quantum dot are calculated
using self-consistent COMSOL MULTIPHYSICS simulations
for the potential landscape and a capacitive tight-binding
model. Measurements in a magnetic field applied parallel to
the graphene plane show that spin filling into nearly
degenerate levels obey Hund’s second rule.
The fabrication of the heterostructure shown schemati-

cally in Fig. 1(a) follows the general procedure described in
previous publications [15–17,29]. However, here, the thick-
ness of the h-BN layers (bottom, 28 nm; top, 34 nm), the
split gate separation (100 nm), the thickness of the alumin-
ium oxide layer (30 nm) as well as the width of the finger
gate (20 nm) yield a rather circular shape of the confinement
potential as demonstrated later by simulations [see inset
Fig. 3(a)]. Figure 1(b) shows a false color atomic force
microscope image of the two layers of metal gates fabricated
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on top of the heterostructure. The split gates [golden in
Figs. 1(a) and 1(b)] are used to form a conducting
channel [black in Fig. 1(b)] [15]. For the measurements
discussed in this Letter the right finger gate [gray in
Fig. 1(b)] is grounded while the left [blue in Fig. 1(b)] is
used to form a quantum dot (QD) underneath it [16,17].
Unless stated otherwise, a p-type conducting channel is
formed between the two split gates, with insulating regions
below them, by applying VBG ¼ −2.3 V to the back gate,
and VSG ¼ 1.242 V to the split gate. The finger gate is then
used to form an n-type quantum dot, where the p-n junctions
forming between the dot and the channel act as tunnel
barriers [16]. Conductance measurements are taken at an
electron temperature of ∼100 mK by applying a symmetric
dc bias of 100 μV and measuring the current in a two-
terminal setup.

The single-particle spectrum of this quantum dot is
investigated using addition spectroscopy [1,8]. Figure 1(c)
shows the conductance through the quantum dot as a
function of finger gate voltage VQD. At VQD ¼ 4.8 V, the
first electron is loaded into the dot, as confirmed with a
charge detector neighboring the dot (shown in [18]), and
more electrons follow for higher voltages. Bunching of
successive Coulomb resonances into groups of four, eight,
and twelve is observed. The separation between neighboring
Coulomb resonances reflects the energy needed to load the
next electron into the dot. In a model based on the Hartree
approximation, it is the sum of the charging energy and the
separation between the lowest unoccupied and the highest
occupied single-particle level [1,16].
With finite bias measurements (presented in Fig. S1 in

the Supplemental Material [30]) the finger-gate lever arm
α ¼ 0.027 is determined for the first electron. It decreases
to α ¼ 0.019 for the twenty-fourth electron due to increas-
ing dot size. These lever arms allow us to convert the gate
voltage differences ΔVQD [horizontal axis of Fig. 1(c)] into
energy differences ΔE ¼ eαΔVQD [1]. For the subsequent
analysis, the lever arm is determined individually for each
electron number.
We plot the addition energy for successive filling of

electrons in Fig. 1(d). For the first electron the addition
energy is 5.5 meV. It generally decreases with an increasing
number of electrons in the dot [1,16], as the electronic size
of the dot increases. When the quantum dot is filled with
the fourth, the twelfth, and the twenty-fourth electron, an
enhanced addition energy is observed, which indicates shell
filling in the quantum dot as we will further confirm
below [1].
We obtain information about the magnetic properties of

the individual single-particle energy levels by measuring
their response to an external magnetic field applied
perpendicular to the graphene sheet. Subtracting the charg-
ing energy between neighboring resonances yields the
magnetic field dispersion of the single-particle energy levels
Eν shown in Fig. 2(b) [35]. The two prominent slopes with
opposite sign of the levels as a function of B⊥ seen in
Fig. 2(b) are well known [16] and reflect the valley splitting
due to the opposite magnetization of the K- and K0-valley
states. An approximate zero-field single-particle level spac-
ing ΔEsp [Fig. 2(a)] is extracted using the charging energy
for each fixed electron number, assuming reasonably that
charging energy is independent of the magnetic field [35].
We observe again increased level spacings at four, twelve,
and twenty-four electrons, the same as the addition energy in
Fig. 1(d), which confirms the shell filling interpretation.
To estimate the circularity of the quantum dot we

evaluate its size and shape by solving Poisson’s equation
in three dimensions with an electron density in the
graphene plane determined self-consistently within the
Thomas-Fermi approximation. Details of these evaluations
are shown in the Supplemental Material [30]. The inset of
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FIG. 1. (a) Schematic representation of the stack. From bottom
to top it is built up with a graphite back gate (gray), a bottom
h-BN (light blue), a bilayer graphene flake capped with a top
h-BN. Separated vertically by an aluminium oxide layer, the split
gates (gold) and finger gate (dark blue) are used to electrostati-
cally define a quantum dot (depicted in red). (b) False color
atomic force microscope picture of the sample, with source (S)
and drain (D) contacts (rose), split gates (SG, gold) and finger
gate (FG, blue). The second finger gate (gray) is grounded.
(c) Two-terminal conductance trace through the dot with respect
to the applied finger-gate voltage VQD. (d) Addition energy
needed for an extra electron versus number of electrons ν in the
dot extracted from (b). Inset: Schematic depiction of the potential
well including the energy levels n corresponding to the measured
bunching, each occupied with four electrons.
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Fig. 3(a) shows the simulated potential landscape for an
exemplary finger gate voltage. The yellow lines outline the
split gates forming the conducting channel, where the light
blue dashed lines delineate the finger gate that is used to
form the dot. Below the finger gate, the higher electric
potential forms the potential well serving as the quantum
dot confinement potential. The gray lines are equipotential
lines indicating the shape of the dot confinement. The
nearly circular shape of the equipotentials may cause
approximate orbital level degeneracies.
For a comparison of the experimentally determined

single-particle level spacing in Fig. 2(a) with the theoretical

calculations modeling the system for spinless electrons in a
single valley, we plot Eν − E1, the single-particle energy
levels Eν with respect to the first energy level E1, in
Fig. 3(a). The measured spectrum shows that the single-
particle energies of the first four, fifth to twelfth, and the
thirteenth to twenty-fourth electron are each closer together
than the energy separation to the next bunch of single-
particle energies. This implies that the second and third
energy level (n ¼ 2, 3) of a given spin and valley are nearly
degenerate. The same holds for the fourth, fifth, and sixth
levels (n ¼ 4, 5, 6) [see inset of Fig. 1(d)].
The threefold degeneracy obtained in the Darwin-Fock

model for the third orbital level (n ¼ 4, 5, 6) is accidental
because of the parabolic confinement potential and cannot
explain our observations. In addition, the Berry curvature
and the resulting orbital magnetic moment in bilayer
graphene lift the degeneracy between d-shell states with
different radial quantum numbers [28].
Figures 3(b) and 3(c) show calculated energy levels in a

circular bilayer graphene quantum dot for different band
gaps inside the dot and different dot sizes, where each data
point represents four degenerate spin and valley states. We
theoretically describe the quantum dot by a smooth, rota-
tionally symmetric confinement potential with a spatially
varying spectral gap (see Supplemental Material for details
about the model and the calculation [30]). We model the
experiment by simultaneously changing the dot size L and
the gap inside the dot (as they are tuned by the finger gate)
while keeping the gap under the split gates constant. In
Fig. 3(b) we see that for a small dot and a small gap, the dot
features a single orbital ground state and orbitally degen-
erate doublet of excited states, similar to the single-particle
level spectrum of a two-dimensional harmonic oscillator.
Increasing the dot and gap size in Fig. 3(c) enhances the
effect of trigonal warping, leading to triplet degeneracies
corresponding to the three minivalleys around each of
the bilayer graphene’s valleys [see Fig. S2(e) in the
Supplemental Material [30] ] [28]. Note that the parameters
in Figs. 3(b) and 3(c) are chosen, such that we account for
the following effects: (1) the electric susceptibility of the
bilayer’s two monolayers, together with the electron
density redistribution between the layers, reduce the value
of the gap compared to naive estimates [36]; and (2) an
increasing number of electrons inside the dot affect the
shape of the confinement potential, causing it to be flatter
and more shallow than that for the empty dot. In the
Supplemental Material [30], we show further dot spectra
for a broader range of parameters, demonstrating that the
change of the dot levels’ multiplicity with gap and dot size
is robust and does not depend on the exact choice of
parameters.
Comparing the measured single-particle level spectrum

in Fig. 3(a), where groups of four experimental data points
correspond to one fourfold degenerate calculated data point
in Figs. 3(b) and 3(c) [note that the first two data points in
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FIG. 2. (a) Single-particle level spacing of the quantum dot as a
function of the energy scale extracted from the single-particle
energy dispersion in (b) at zero field. The corresponding number
of electrons in the dot is marked. (b) Single-particle energy
dispersion with perpendicular magnetic field B⊥, taken at VBG ¼
−2.5 V and VSG ¼ 1.397 V.
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Fig. 3(a) overlap] with the theoretical model, the observed
formation of the first two bunches of four and eight levels
[see also Fig. 2] agrees with the scenario in Fig. 3(b) of a
small dot with a small gap. This scenario, however, does
not predict the third bunch of twelve resonances observed
in Fig. 2; instead it foresees another two bunches of four
and eight resonances, which is not observed. However,
since both the displacement field and the quantum dot size
increase with increasing electron number in the dot [30],
the large-dot-large-gap scenario depicted in Fig. 3(c)
explains the bunching of twelve levels. This suggests a
gradual transition from the scenario shown in Figs. 3(b) to
that in Figs. 3(c) [28] while the quantum dot is being filled
with more than five electrons. Such a transition is plausible
for the following experimental reasons: First, charging
energies extracted from finite-bias Coulomb-diamond mea-
surements decrease consistently with increasing electron
number [30], indicating the increasing electronic size of the
quantum dot. Second, given the negative back gate voltage
in our experiment, an increasingly positive voltage VQD on
the finger gate increases the displacement field and thereby
the induced band gap inside the quantum dot.
Next, we extract the spin-filling sequence of the quantum

dot and the Zeeman splitting of the levels by performing
measurements in magnetic field applied parallel to the
graphene plane. Figure 4(a) shows the first bunch of four
Coulomb peaks with parallel magnetic field. The dashed
red lines provide a guide to the eye for a spin splitting with
g factor of 2. In agreement with our earlier work [19], we
find in Fig. 4(a) that the second electron is filled with its
spin parallel to the first, indicating a two-electron spin-
triplet and valley-singlet ground state. The third and fourth
electrons are then filled with spin opposite to the first two,

resulting in a filled shell with zero spin for four electrons in
the dot. The observed spin-filling sequence can therefore be
characterized by the total-spin quantum number sequence
sz ¼ 1=2; 1; 1=2; 0, which follows Hund’s second rule.
Similarly, Fig. 4(b) displays the magnetic field depend-

ence of the fifth to twelfth conductance resonance corre-
sponding to the second bunch of levels, i.e., the second
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FIG. 4. (a),(b) Conductance through the quantum dot with
respect to parallel magnetic field Bk and VQD for the first four and
the fifth to twelfth electron, respectively. The red lines denote the
slope of a Zeeman splitting with a g factor of two for free
electrons. (c) Fitted slopes of the shift of the resonances with
magnetic field α=ð2μBÞdBk=dVQD. The energy levels ν are filled
following Hund’s second rule.
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shell. The first four electrons loaded into the quantum dot
have the same spin, whereas the fifth to the eighth
electrons are filled with the opposite spin. The total-spin
quantum number sequence in this shell is therefore
sz ¼ 1=2; 1; 3=2; 2; 3=2; 1; 1=2; 0. The appearance of the
remarkably high total spin sz ¼ 2 for eight electrons in the
dot shows that exchange interaction effects are stronger in
this quantum dot than any level splittings induced by, for
example, deviations from perfect circular symmetry or
band nonparabolicities.
Figure 4(c) shows the fitted slopes of shifts of the

resonances in magnetic field 2α=μB × dVQD=dBk which
supports this interpretation. Furthermore, we extract g
factors from splittings of neighboring peaks [30,37]. For
the first twelve electrons, the g factor jgj ¼ 2.3� 0.3 fits
the expectation for electrons in graphene for small gap sizes
and small dots. For larger electron numbers the situation is
more complex. In Fig. 4(c) we see that slopes tend to be
smaller than the expected values of �2, and there is a
gradual change of slope from negative to positive values
rather than an abrupt jump after the first six filled spins,
which would correspond to a half-filled shell. While the
exact origin of this behavior remains an open question, we
speculate that exchange and correlation effects may play
important roles in its explanation.
In summary, we performed measurements on a nearly

circular dot, enabling us to observe the transition from
filling 1 × 4- and 2 × 4-fold degenerate Fock-Darwin-like
shells, to filling a 3 × 4-fold degenerate shell governed by
the threefold minivalley symmetry. Observation of this
transition was realized by increasing electron occupation of
the dot, which is naturally accompanied with an increasing
dot size and an increasing band gap. We confirmed that the
dot has a nearly circular shape by supporting electrostatic
simulations of the potential landscape. Calculations of the
single-particle level spectrum of a dot with circular sym-
metry are in qualitative agreement with our experimental
results. Understanding the single-particle spectrum and its
tunability is an important step toward identifying suitable
states for qubit operation in bilayer graphene quantum dots.
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