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Non-Fermi liquid (NFL) physics can be realized in quantum dot devices where competing interactions
frustrate the exact screening of dot spin or charge degrees of freedom. We show that a standard nanodevice
architecture, involving a dot coupled to both a quantum box and metallic leads, can host an exotic SO(5)
symmetry Kondo effect, with entangled dot and box charge and spin. This NFL state is surprisingly robust
to breaking channel and spin symmetry, but destabilized by particle-hole asymmetry. By tuning gate
voltages, the SO(5) state evolves continuously to a spin and then “flavor” two-channel Kondo state. The
expected experimental conductance signatures are highlighted.
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Nanoelectronic circuit realizations of fundamental quan-
tum impurity models allow the nontrivial physics associ-
ated with strong electron correlations to be probed via
quantum transport measurements [1]. Quantum dot devi-
ces, in particular, can exhibit the Kondo effect at low
temperatures [2]: a localized magnetic moment on the dot is
dynamically screened by conduction electrons in the
metallic leads. Single-dot devices can behave as single-
electron transistors, with Kondo-enhanced spin-flip scatter-
ing strongly boosting the conductance between source and
drain leads measured in experiments [3–5].
The conventional Kondo effect [6] involves a localized

“impurity” spin-1
2
degree of freedom, coupled to a single

effective channel of conduction electrons, and has SU(2)
spin symmetry. However, the Kondo effect is also observed
in more complex systems, such as coupled quantum dot
devices [7,8] and single-molecule transistors [9,10], involv-
ing spin and orbital degrees of freedom. In such systems, it
is possible to realize variants of the classic spin-1

2
single-

channel Kondo paradigm: e.g., orbital [11], spin-1 [12,13],
and ferromagnetic [14] Kondo effects. In particular, the
symmetry of the effective model is important in determin-
ing the low-energy physics. Kondo effects with SU(4)
symmetry can be realized in double quantum dots [15,16]
and carbon nanotube dots [17,18] and also have Fermi
liquid (FL) ground states.
More exotic non-Fermi liquid (NFL) states can be

realized in multichannel systems, where competing inter-
actions frustrate exact screening of the dot spin or charge
degrees of freedom at special high-symmetry points [19].
This results in a residual dot entropy characteristic of
fractionalized excitations and anomalous conductance sig-
natures [20,21]. However, this kind of NFL physics is

typically delicate, being found at the quantum critical point
between more standard FL phases, and is unstable to
relevant symmetry-breaking perturbations.
Experimentally, the major challenge to realize NFL Kondo

physics in quantum dot devices is to prevent mixing between
multiple conduction electron channels. Two prominent sce-
narios to achieve this utilize an interacting quantum box
(“Coulomb box”) [22,23]. The quantum box is a large
quantum dot, hosting a macroscopically large number of
electrons, but due to quantum confinement has a discrete level
spacing δ and finite charging energy EC. For δ < T < EC the
box effectively provides a continuum reservoir of conduction
electrons, but also displays charge quantization [24].
Spin-two channel Kondo (S-2CK) physics can be real-

ized in a device involving a small quantum dot coupled to a

FIG. 1. Right: schematic of the device. A quantum dot coupled
to a quantum box and source and drain leads. Left: NRG phase
diagram spanned by dot and box gate voltages, Vd ∝ η=Ud and
VB ∝ nB, showing the NFL line for various channel asymmetries
tL=tB. SO(5) point located at nB ¼ � 1

2
and η ¼ 0. Plotted for

constant Ud ¼ 0.3, EC ¼ 0.1, and tB ¼ 0.12.
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quantum box as well as metallic leads [22]. The low-energy
effective model consists of a dot spin-1

2
exchange coupled to

two conduction electron channels (leads and box), with
mixing between the channels suppressed by the large box
charging energy. Both channels compete to Kondo screen
the dot spin, resulting in a NFL state. Breaking channel or
spin symmetry relieves the frustration and results in a
standard FL state. This physics was realized experimentally
in Refs. [25,26].
By contrast, a charge-2CK effect can be realized when a

quantum box tuned to its charge degeneracy point is
coupled to two leads, as proposed in Ref. [23] and realized
experimentally in Refs. [27,28]. In this case, the macro-
scopic box charge states play the role of a pseudospin
impurity. Distinctive signatures of the resulting NFL state
are observable in quantum transport [27–34].
In this Letter, we revisit the device of Refs. [22,25,26] but

now examine the full phase diagram as function of dot and
box gate voltages, which in turn control the dot and box
occupancies (see Fig. 1). We show that the emergent SU(4)
symmetry of the system arising when the dot hosts a local
moment and the box is at its charge degeneracy point is
reduced to SO(5) at particle-hole symmetry. Although the
SU(4) state is a FL [35], a novel NFL Kondo effect arises at
the SO(5) point, in which both dot and box charge and spin
are maximally entangled. We achieve a detailed understand-
ing of this state using a combination of conformal field theory
[36–38] (CFT), bosonization [39], and numerical renormal-
ization group [40,41] (NRG) techniques. Remarkably, the
NFL physics at this point is robust to breaking channel and/or
spin symmetry. Furthermore, we show that, by tuning gate
voltages, the SO(5) state evolves continuously into the more
familiar S-2CK state of Refs. [22,25,26] and then into a
flavor-2CK (F-2CK) effect when the dot local moment is lost
but box charge fluctuations persist. The distinctive transport
signatures associated with this physics are accessible in
existing experimental setups.
Models and mappings.—The device illustrated in Fig. 1 is

described by the Hamiltonian H¼H0þHBþHdþ
P

γH
γ
hyb,

with γ ¼ Ls; Ld; B for the source and drain leads and box,
respectively. H0 ¼

P
γ;k;σ ϵγkc

†
γkσcγkσ describes the three

conduction electron reservoirs, while

HB ¼ ECðN̂B − N0 − nBÞ2; ð1Þ

Hd ¼
X

σ

ϵdd
†
σdσ þ Udd

†
↑d↑d

†
↓d↓ ð2Þ

describe the box Coulomb interaction and the dot. The
dot is tunnel coupled to the leads and box via
Hγ

hyb ¼
P

k;σðtγkd†σcγkσ þ H:c:Þ. Here, σ ¼ ↑;↓ denotes
(real) spin, and dσ or cγkσ are operators for the dot or
conduction electrons, respectively. N̂B ¼ P

k;σ c
†
BkσcBkσ is

the total number operator for the box electrons. The dot and

box occupations are controllable by gate voltages Vd ∝ η ¼
ϵd þ 1

2
Ud and VB ∝ nB, respectively. For simplicity, we now

take equivalent conduction electron baths ϵγk ≡ ϵk with a
constant density of states ν defined inside a band of half-width
D ¼ 1, such that ϵk ¼ vFk at low energies. We define
t2γ ¼

P
k jtγkj2 and t2L ¼ t2Ls þ t2Ld.

Following Ref. [42], we incorporate the box interaction
term, Eq. (1), into the hybridization

HB þHB
hyb → ECðT̂ z − nBÞ2 þ

X

k;σ

ðtBkd†σcBkσT̂ − þ H:c:Þ;

where T̂ � ¼ P
NB

jNB � 1ihNBj are ladder operators for
the box charge, and T̂ z ¼ P

NB
ðNB − N0ÞjNBihNBj. Note

that the model possesses the symmetry nB → nB � 1.
Particle-hole (PH) asymmetry is controlled by nB and η;
the model is invariant to replacing nB → −nB and η → −η,
related by a PH transformation. Exact PH symmetry arises
at η ¼ 0 for any integer or half-integer nB.
For the NRG calculations presented here, only a finite

number of charge states around the reference N0 are
required to obtain converged results [40,41,43].
Spin-2CK regime.—For large box charging energy EC

and deep in the dot and box Coulomb blockade regime
(near the point η ¼ 0 and nB ¼ 0), the dot hosts an
effective spin-1

2
local moment, and the box has a well-

defined number of electrons N0. At low temperatures
T ≪ EC;Ud virtual charge fluctuations on the dot and
box due to Hhyb generate the spin-flip scattering respon-
sible for the Kondo effect. However, finite EC blocks
charge transfer between the leads and box, giving rise to a
frustration of Kondo screening and the possibility of NFL
physics [22]. In this regime, a standard Schrieffer-Wolff
transformation (SWT) yields the S-2CK model [19,22]

HS−2CK ¼ H0 þ S⃗d · ðJ LS⃗L þ J BS⃗BÞ; ð3Þ

where S⃗d is a spin-1
2

operator for the dot, while

S⃗α¼L;B ¼ 1
2

P
σ;σ0 c

†
ασσ⃗σσ0cασ0 , with cBσ ¼ð1=tBÞ

P
k tBkcBkσ

and cLσ ¼ ð1=tLÞ
P

kðtLskcLskσ þ tLdkcLdkσÞ the local con-
duction electron orbitals at the dot position, and where

J L ¼ 8t2L
Ud

�

1−
�
2η

Ud

�
2
�
−1
; J B ¼ 8t2B

U0
d

�

1−
�
2η0

U0
d

�
2
�
−1
;

ð4Þ

with U0
d ¼ Ud þ 2EC and η0 ¼ ηþ 2ECnB. Deep in the

S-2CK regime, NFL physics arises when J L ¼ J B. For
given physical device parametersUd, EC, tL, and tB, Eq. (4)
implies the existence of two NFL lines in the ðnB; ηÞ plane
related by the symmetry η → −η and nB → −nB, see Fig. 1.
NFL physics can therefore be accessed by tuning the gate
voltages Vd ∝ η and VB ∝ nB, as demonstrated experimen-
tally in this regime in Refs. [25,26]. At the PH symmetric
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point η ¼ nB ¼ 0, S-2CK arises for tB ¼ ζtL with
ζ2 ≃ 1þ 2EC=Ud. Although this NFL state is robust to
PH asymmetry, it is destabilized by channel asymmetry
J L ≠ J B or spin asymmetry B ≠ 0 [48].
SO(5) Kondo.—At nB ¼ 1

2
, the box states with N0 and

ðN0 þ 1Þ electrons are exactly degenerate. Neglecting other
box charge states (which are ∼EC higher in energy), we may
define charge pseudospin-1

2
operators T̂þ

B ¼ jN0 þ 1ihN0j,
T̂−
B ¼ ðT̂þ

B Þ†, and T̂z
B ¼ 1

2
ðjN0 þ 1ihN0 þ 1j − jN0ihN0jÞ.

The charge pseudospin is flipped by electronic tunneling
between the dot and box. The low-energy effective model is
obtained by projecting onto the dot spin and box pseudospin
sectors using a generalized SWT.We now consider explicitly
the special point with PH symmetry (nB ¼ 1

2
and η ¼ 0) and

channel symmetry (JL ¼ JB ≡ J, which implies tB ¼ ξtL
with ξ2 ≃ 1þ 2EC=U0

d), whence [49,50]

Heff ¼ H0 þ JS⃗d ·

�

c†ασ
σ⃗σσ0

2
cασ0

�

þ VzT̂
z
B

�

c†ασ
τzαβ
2

cβσ

�

þQ⊥S⃗d · ½c†ασ σ⃗σσ0 ðτþαβT̂−
B þ τ−αβT̂þ

B Þcβσ0 �; ð5Þ

where the Pauli matrices σa (τb) act in spin (channel) space,
and a sum over repeated indices is now implied.
Although initially the coupling constants in Eq. (5) take

different values, perturbative scaling [51] shows that the
model develops an emergent symmetry J ¼ Vz ¼ Q⊥ at an
isotropic low-temperature fixed point. Then the renormal-
ization group (RG) equations reduce to dJ=dl ¼ 3J2, and
we have a Kondo scale TSOð5Þ

K ∼D expð−1=3νJÞ.
The fixed point has an unusual SO(5) symmetry, which

can be seen by writing Eq. (5) in the symmetric form

HSOð5Þ ¼ H0 þ J
X10

A¼1

JAMA; ð6Þ

where JA ¼ c†ασTA
αβσσ0cβσ0 andM

A ¼ f†ασTA
αβσσ0fβσ0 in terms

of a fermionic impurity operator carrying both flavor and
spin labels subject to the constraint f†ασfασ ¼ 1 such that
Ŝad ¼ 1

2
f†ασσaσσ0fασ0 and T̂b

B ¼ 1
2
f†αστbαβfβσ. Here, fTAg are

the ten generators of SO(5) [52], Tab ¼ −Tba (with
a; b ¼ 1;…; 5) satisfying the algebra ½Tab; Tcd� ¼
−iðδbcTad − δacTbd − δbdTac þ δadTbcÞ in the four-dimen-
sional spinor representation

1

2
σa¼1;2;3τ1 ¼ Ta4;

1

2
σ1τ0 ¼ T23;

1

2
σ3τ0 ¼ T12;

1

2
σa¼1;2;3τ2 ¼ Ta5;

1

2
σ2τ0 ¼ T31;

1

2
σ0τ3 ¼ T45;

establishing the equivalence between Eqs. (5) and (6).
We applied the machinery of CFT [36–38] to analyze the

fixed point properties using the symmetry decomposition

Uð1Þc × Z2 × SOð5Þ1. Here, U(1) corresponds to the
charge sector and Z2 is an Ising model. The primary fields
of the SOð5Þ1 theory consist of a singlet with scaling
dimension 0, a spinor with scaling dimension 5

16
, and a

vector with scaling dimension 1
2
[53]. The SO(5) fixed point

can be obtained by fusion with the spinor under which the
impurity transforms.
The finite size spectrum provides a means of character-

izing the fixed point. For an effective 1D system of length
L, the energies (E) in units of 2πvF=L, and corresponding
degeneracies (No.), can be determined from CFT. We
find [43] ðE;No:Þ¼ð0;2Þ;ð1

8
;4Þ;ð1

2
;10Þ;ð5

8
;12Þ;ð1;26Þ;…,

consistent with our NRG results and establishing the new
SO(5) fixed point as NFL. Interestingly, this spectrum is
identical to that of the standard S-2CK model [37].
The entropy at the fixed point is given in terms of the
modular S-matrix within CFT [36–38], and here yields
Simp ¼ 1

2
lnð2Þ, consistent with NRG [Fig. 2(a)], again

reminiscent of S-2CK.

(a)

(b)

(c)

FIG. 2. Physical properties of the SO(5) Kondo effect, obtained
by NRG for nB ¼ 1

2
, η ¼ 0, Ud ¼ 0.3, EC ¼ 0.1, tL ¼ 0.085, and

tB ≃ ξtL ¼ 0.1. (a) Impurity contribution to entropy SimpðTÞ,
showing partial quenching of the entangled spin and flavor
degrees of freedom on the scale of the Kondo temperature
TK ∼ 10−4. For TK ≪ T ≪ EC, free impurity spin and flavor
give a ln(4) entropy, while SimpðTÞ ¼ 1

2
lnð2Þ for T ≪ TK,

characteristic of the free Majorana fermion at the SO(5) fixed
point. (b) T ¼ 0 local spin and flavor dynamical susceptibilities,
both showing apparent FL-like behavior χlocðωÞ ∼ ω for ω ≪ TK.
(c) Linear response conductance through the dot GðTÞ=G0 (blue
line), with G ¼ 1

2
G0 at T ¼ 0, and leading behavior GðTÞ −

Gð0Þ ∼þðT=TKÞ3=2G0 (inset, dashed line). The standard spin-
2CK conductance line shape is given for comparison as the
dotted line.
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However, differences from the standard S-2CK picture
can be seen in dynamical quantities such as the local
susceptibilities and conductance—see Figs. 2(c) and 2(d).
Since the impurity spin S⃗ and pseudospin T⃗ operators are
absorbed into the conduction electrons at the strong
coupling fixed point, they must transform among the ten
generators of SO(5). But such fields occur only as
descendants in SOð5Þ1, and so spin-spin correlation func-
tions appear FL-like, χslocðωÞ ∼ ω (similar for flavor sus-
ceptibility). This contrasts to the regular k-channel Kondo
effect: the spin SUð2Þk theory contains a vector field that
transforms as the three components of the impurity spin,
with scaling dimension ½2=ð2þ kÞ�, which leads to
anomalous NFL properties in the spin susceptibility
χsloc ∼ ω−ðk−2=kþ2Þ. The SO(5) point appears to have been
missed in Ref. [49] because of the apparent FL scaling of its
susceptibilities. However, the 1

2
lnð2Þ residual entropy

is a clear NFL signature. Furthermore, we find a non-
monotonic conductance, with a NFL leading power law
GðTÞ −Gð0Þ ∼þT3=2. This contrasts to S-2CK conduct-
ance, which approaches its fixed point value as −

ffiffiffiffi
T

p
[22,54–56] or −T2 FL conductance for 1CK [2].
To gain further insight, we expand on the bosonization

and refermionization techniques [57] developed by Emery
and Kivelson (EK) for the S-2CK model [39] and include
the coupling to the flavor degree of freedom. This method
allows us to express a spin and flavor anisotropic version of
Eq. (5) in terms of local fermions d ∝ S−d and
a ∝ T−

B, relating to impurity spin and flavor degrees
of freedom, with corresponding Majorana operators
dþ ¼ ð1= ffiffiffi

2
p Þðd† þ dÞ and d− ¼ ð1= ffiffiffi

2
p

iÞðd† − dÞ, and
similar for a, as well as a 1D bulk fermionic “spin-flavor”
field for the conduction electrons denoted ψ sfðxÞ, with
Majorana components χþ ¼ ð1= ffiffiffi

2
p Þ½ψ†

sfð0Þ þ ψ sfð0Þ�,
χ− ¼ ð1= ffiffiffi

2
p

iÞ½ψ†
sfð0Þ − ψ sfð0Þ�. The resulting EK

Hamiltonian takes the simple quadratic form [43]

HEK ¼ H0 þ iJ⊥d−χþ − 2iQ⊥dþa−: ð7Þ

The J⊥ term is the usual EK form of the
S-2CK interaction. The spin-flavor coupling term Q⊥
couples and gaps out the pair dþ and a−. Unlike in the
S-2CK model, where dþ remains decoupled, here we see
that it is aþ that is free at the SO(5) fixed point and is
responsible for the 1

2
lnð2Þ residual entropy. The fixed point

properties of Eq. (7) describe the physical quantum dot
system because the artificial spin-flavor anisotropies used
to obtain it are RG irrelevant.
Stability of SO(5) Kondo.—We consider the effect of

symmetry-breaking perturbations at the SO(5) point.
Channel asymmetry, corresponding to tB ≠ ξtL in the

bare model, generates an extra term in Eq. (5) given by
δHch ¼ J−S⃗d · ðc†ασσ⃗σσ0τzαβcβσ0 Þ with J− ∝ JB − JL. Under
the EK mapping, this becomes δHch ¼ −iJ−dþχ− as in

the S-2CK model. But in contrast to the S-2CK model,
the SO(5) point is not destabilized by this perturbation
because the dþ Majorana involved in J− is already gapped
out by the spin-flavor coupling Q⊥ in Eq. (7). The aþ
Majorana remains free. Breaking spin symmetry by
applying a dot magnetic field δHs ¼ BŜzd ¼ −iBdþd−
is similarly irrelevant at the SO(5) fixed point. The
NFL physics is therefore robust to breaking channel
and spin symmetries. This is directly confirmed by
NRG [43].
PH symmetry is broken by η ≠ 0 for nB ¼ 1

2
. Performing

the SWT yields an additional contribution to Eq. (5)
of the form [50] δHPH ¼ 1

2
V⊥

P
b¼1;2 T̂

b
Bðc†αστbαβcβσÞ þ

Qz
P

a¼1;2;3 Ŝ
a
dT̂

3
Bðc†ασσaσσ0τ3αβcβσ0 Þ where V⊥; Qz ∝ η. This

perturbation contains an additional five generators, which
together with the ten from SO(5) form the defining
representation of SU(4). Indeed, under RG, the system
flows to a fully isotropic SU(4) FL fixed point, as discussed
in Refs. [16,35,49], with zero residual entropy. Breaking
PH symmetry therefore destabilizes the NFL SO(5) fixed
point, with an emergent FL crossover scale T� ∼ η2 [43].
Unusually then, lowering the symmetry of the bare model
by introducing finite η leads to a low-energy SU(4)
fixed point with higher symmetry than the SO(5) fixed
point obtained at η ¼ 0. Applying the EK mapping, we
obtain [43] δHPH ¼ −iV⊥aþχ−. This is a RG relevant term
with scaling dimension 1

2
: the previously free aþ Majorana

is now coupled to the χ− field, quenching the 1
2
lnð2Þ

entropy and leading to a FL state, with χs;floc ∼ ω and
GðTÞ − Gð0Þ ∼ T2 [58].
Full phase diagram.—We now explore the entire ðnB,ηÞ

plane using NRG, focusing on the quantum critical lines
along which NFL physics can be realized in experiment
(see Fig. 1). In practice, we tune η for a given nB to find the
critical point, which we identify in NRG from its character-
istic 1

2
lnð2Þ residual entropy.

An effective flavor field is generated on moving away
from nB ¼ 1

2
. The resulting perturbation δHf ¼ BfT̂

z
B, with

Bf ¼ ECð1 − 2nBÞ, breaks PH symmetry and is therefore
RG relevant at the SO(5) fixed point. However, the two
sources of PH asymmetry from η ≠ 0 and nB ≠ 1

2
can cancel

out [close to the SO(5) point this arises along the line
2Q⊥V⊥ ¼ J−Bf [58] ]. NRG results confirm the continu-
ous evolution of the NFL state on moving from nB ¼ 1

2
into

the box Coulomb blockade regime centered on nB ¼ 0. In
particular, the spin and flavor susceptibilities along the
NFL lines in Fig. 3 show the crossover from spin-flavor
Kondo to S-2CK.
The NFL line with tB=tL ¼ ζ (blue line, Fig. 1) is

invariant to the PH transformation, nB → −nB and
η → −η, and smoothly connects spin-flavor Kondo at all
half-odd-integer nB with S-2CK at all integer nB. For
tB=tL < ζ (green and pink lines, Fig. 1), the NFL lines
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terminate, signaling that the effective PH asymmetry from
nB can no longer be compensated by tuning η.
By contrast, for tB=tL > ζ (red and black lines, Fig. 1),

the NFL lines continue into an unexpected region of the
phase diagram where jηj=Ud > 1

2
. Here spin fluctuations are

suppressed since the dot no longer hosts a local moment,
but flavor fluctuations are enhanced (see Fig. 3). The NFL
lines in this regime diverge with η → �∞ as nB → � 1

2
,

and F-2CK dominates. Along the crossover from S-2CK to
F-2CK, spin and flavor fluctuations become equally
balanced at the dot charge degeneracy point jηj ¼ 1

2
Ud.

The NFL state at this point develops at a strongly enhanced
Kondo temperature (Fig. 3), making it particularly well
suited to experimental investigation.
Conclusions.—We revisit a classic model describing

coupled quantum dot and box devices used in experiments
to probe NFL physics, uncovering a rich range of new
physics, including a novel spin-flavor SO(5) Kondo effect.
We study the evolution of the NFL line as a function of dot
and box gate voltages using a combination of analytical and
numerical techniques, showing that the well-known S-2CK
effect can continuously transform into the F-2CK or SO(5)
Kondo effects. Distinctive experimental signatures of this
new physics should be observable in conductance [58].
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