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The appearance of half-quantized thermal Hall conductivity in α-RuCl3 in the presence of in-plane
magnetic fields has been taken as a strong evidence for the Kitaev spin liquid. Apart from the quantization,
the observed sign structure of the thermal Hall conductivity is also consistent with predictions from the exact
solution of the Kitaev honeycombmodel. Namely, the thermal Hall conductivity changes sign when the field
direction is reversed with respect to the heat current, which is perpendicular to one of the three nearest
neighbor bonds on the honeycomb lattice. On the other hand, the thermal Hall conductivity is almost zero
when the field is applied along the bond direction. Here, we theoretically demonstrate that such a peculiar
sign structure of the thermal Hall conductivity is a generic property of the polarized state in the presence of
in-plane magnetic fields. In this case, the thermal Hall effect arises from topological magnons with finite
Chern numbers, and the sign structure follows from the symmetries of the momentum space Berry
curvature. Using a realistic spin model with bond-dependent interactions, we show that the thermal Hall
conductivity can have a magnitude comparable to that observed in the experiments. Hence, the sign structure
alone cannot make a strong case for the Kitaev spin liquid. The quantization at very low temperatures,
however, will be a decisive test as the magnon contribution vanishes in the zero temperature limit.
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Introduction.—The Kitaev honeycomb model [1], in
which nearest neighbor S ¼ 1=2 moments are coupled to
each other by bond-dependent Ising interactions, is one of
the few exactly soluble spin models that leads to an unusual
ground state known as a quantum spin liquid. In the Kitaev
spin liquid, the S ¼ 1=2 moments fractionalize into
Majorana fermions [2] coupled to a Z2 gauge field. The
Kitaev interaction is proposed to have a dominant presence
in systems with 4d or 5d transition metal elements [3,4]
such as Na2IrO3 [5–7] and α-RuCl3 [8]. However, there
exist other interactions as well [9], which pave the way for a
zigzag magnetically ordered state [10–13] instead of the
desired quantum spin liquid. A dramatic twist in the
materialization of the Kitaev spin liquid came with the
observation of half-quantized thermal Hall conductivity in
α-RuCl3 under an external magnetic field, which has both
finite in-plane and out-of-plane components [14]. Since the
half-quantization is a signature of Majorana fermions
[1,15–17], the experiment strongly hints at a field induced
Kitaev spin liquid in α-RuCl3 [18–26]. If the half-quanti-
zation is confirmed, this would be a smoking gun that
quantum spin liquid does exist in nature, not merely being a
theoretical concept.
More recently, a similar thermal transport measurement

with in-plane magnetic fields was performed [27]. It was
reported that the half-quantization of thermal Hall conduc-
tivity can still occur even when the field is completely
in plane. Compared to the usual textbook example of

two-dimensional conductors where the Hall effect only

takes place under out-of-plane fields, the sizable thermal

Hall signal—not to mention the additional fact that it is
half-quantized—in Ref. [27] is in some sense anomalous.
The experimental setup is described as follows. The two
independent in-plane directions are conventionally chosen
to be (i) the a direction, which is perpendicular to one of the
three nearest neighbor bonds on the honeycomb lattice, and
(ii) the b direction, which is parallel to a nearest neighbor
bond and perpendicular to the a direction (see Fig. 1). In the
experiment, the heat current is always applied along the a
direction, while the magnetic field is applied along the a, b,
or −a direction. The corresponding thermal Hall conduc-
tivity is observed to be positive, zero, or negative, assuming

FIG. 1. The nearest neighbor bond types x, y, and z in the KΓΓ0
model, the primitive lattice vectors a1 and a2 on the honeycomb
lattice, and the crystallographic directions a (in plane), b (in plane),
and c (out of plane). Measured in the cubic basis, according to
which the spin components in the KΓΓ0 model are defined, the a,
b, and c directions are ½112̄�, ½1̄10�, and ½111�, respectively.
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that the transverse temperature gradient is measured
along the b direction [28]. Such a sign structure fits into
the theory of a non-Abelian spin liquid, which is stabilized
in the Kitaev model under a magnetic field. The half-
quantized thermal Hall conductivity is observed along
the a and −a directions within a certain range of tempera-
tures and field strengths.
An independent measurement [29] confirmed such a sign

structure of the thermal Hall conductivity but did not quite
observe the half-quantization plateau. Rather, the thermal
Hall conductivity looks more like a smooth function across
a wide range of temperatures (including the suspected spin
liquid regime) and vanishes rapidly when the temperature
approaches zero. This discovery suggests the existence of a
state that may be different from the non-Abelian spin liquid
but able to produce the same sign structure of the thermal
Hall conductivity.
In this Letter, we theoretically demonstrate that the peculiar

sign structure of the thermal Hall conductivity κxy is a generic
property of the polarized state in Kitaev magnets under in-
plane magnetic fields. In this case, the thermal Hall effect
arises from topological magnons [30–34] with finite Chern
numbers C ¼ �1, while the sign structure of κxy is a
consequence of the symmetries of the momentum space

Berry curvature. Instead of the Kitaev model, we consider a
more realistic KΓΓ0 model subjected to in-plane magnetic
fields as in the experiments [27,29]. We derive analytically the
following theorems concerning the sign structure of the
thermal Hall conductivity due to magnons in the linear spin
wave theory of the polarized state, which are consistent with
the experimental observations.
Theorem 1: κxy in the polarized states under magnetic

fields along the a and −a directions differ by a minus sign.
Theorem 2: κxy in the polarized state under a magnetic

field along the b direction is zero.
Concise proofs will be presented later in the main text,

with details relegated to the Supplemental Material [35].
Theorem 1 only tells us the relative sign of κxy in the a and
−a polarized states, not their absolute signs. Also, Theorem
1 allows for κxy ¼ 0, so it does not guarantee a finite
thermal Hall effect. It is thus important to assume reason-
able values of K, Γ, and Γ0, which minimally model
α-RuCl3, and perform numerical calculations of κxy to
check its magnitude and sign. We find that, with dominant
K < 0 and Γ > 0 [36], κxy is indeed finite and positive
(negative) in the polarized state along the a (−a) direction,
and essentially zero in the polarized state along the b
direction [see Figs. 2(a)–2(f)]. Moreover, the size and trend

FIG. 2. Thermal Hall conductivity κxy=T due to magnons in various polarized states as a function of temperature T, for the
parameterizations ðK;Γ;Γ0Þ ¼ ð−1; 0.2;−0.02Þ and ð−1; 0.3;−0.03Þ, shown in the left and right panels, respectively. The magnetic
field is applied along the a direction in (a) and (b), the −a direction in (c) and (d), and the b direction in (e) and (f). The corresponding
values of κ2Dxy =T ≡ κxyd=T are also indicated. The purple dashed line in (a) and (c) represents the half-quantized thermal Hall
conductivity.
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of κxy are also comparable to those measured experimen-
tally. Using the linear spin wave theory, we also
calculate the dynamical spin structure factor of the a
polarized state [35], which compares well with the inelastic
neutron scattering experiment [22] at about the same fields.
Our result suggests that the observed thermal Hall con-
ductivity, in case the half-quantization is absent, may
originate from the polarized state with magnons as heat
carriers.
Model.—The KΓΓ0 model, which minimally describes

α-RuCl3, under a magnetic field, is given by
H ¼ P

λ∈fx;y;zg
P

hiji∈λ ST
i HλSj −

P
i h · Si, where
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0

B
B
@
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We apply the linear spin wave theory [37,38] to a field
polarized state in the KΓΓ0 model. First, we rotate the
coordinate frames of all spins uniformly such that the z axes
align with the spins Si ¼ RS̃i. Let the orientation of
polarized spins in the original frame be parameterized by
two angles θ and ϕ as Si ¼ Sðsin θ cosϕ; sin θ sinϕ; cos θÞ.
We choose the rotation matrix to be [38]

R ¼

0

B
B
@

cos θ cosϕ − sinϕ sin θ cosϕ

cos θ sinϕ cosϕ sin θ sinϕ

− sin θ 0 cos θ

1

C
C
A ∈ SOð3Þ: ð1Þ

Notice that the columns of R are mutually orthonormal, and
they satisfy the right-hand rule of cross product. Then, we
apply the Holstein Primakoff transformation [37,38] to S̃i
and neglect the terms of third and higher order in the bosonic
operators b and b†. Upon a Fourier transformation, we arrive
at the linear spin wave Hamiltonian in momentum space
H=S ¼ P

k Ψ
†
kDkΨk, where Dk is a four-dimensional

Hermitian matrix and Ψk ¼ ðb1k; b2k; b†1−k; b†2−kÞ. Dk
has to be diagonalized by a Bogoliubov transformation
[39] in order to preserve the commutation relation of bosons.
Once we obtain the linear spin wave dispersion εnk,
we can calculate the thermal Hall conductivity due to
magnons [40–42] as

κxy ¼ −
k2BT
ℏV

X

n

X

k∈FBZ

�

c2½gðεnkÞ� −
π2

3

�

Ωnk; ð2Þ

where FBZ denotes the first Brillouin zone, c2ðxÞ ¼
ð1þ xÞfln½ð1þ xÞ=x�g2 − ðln xÞ2 − 2Li2ð−xÞ, g is the

Bose-Einstein distribution, and Ωnk is the Berry curvature
of the nth band at momentum k. The term −π2=3 will be
dropped in subsequent discussions because the summation
of all Chern numbers is zero [43].
Proof of Theorem 1.—The sets of angles fθ;ϕg in

Eq. (1) for the polarized states along the a and −a
directions are, respectively, fcos−1ð− ffiffiffiffiffiffiffiffi

2=3
p Þ; π=4g and

fcos−1ð ffiffiffiffiffiffiffiffi
2=3

p Þ; 5π=4g. After some algebra [35], one can
show that the linear spin wave Hamiltonians of the a and
−a polarized states are related by Dā

k ¼ ðDa
−kÞ�. Suppose

that Ta
k is the Bogoliubov transformation of Da

k, then T
ā
k ¼

ðTa
−kÞ� is the Bogoliubov transformation of Dā

k,

ðTā
kÞ†Dā

kT
ā
k ¼ ½ðTa

−kÞ†Da
−kT

a
−k�� ¼ Ea

−k ¼ Eā
k; ð3aÞ

Tā
kσ
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kÞ† ¼ ½Ta

−kσ
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−kÞ†�� ¼ σ3; ð3bÞ

where σ3 ¼ diagð1; 1;−1;−1Þ. Equation (3a) says that the
energy eigenvalues at k when hk − a are the same as those
at−kwhen hka. Next, we relate the Berry curvatures in the
two polarized states,

Ωā
n−k ¼ i

�

σ3
�∂Tā

−k
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�†
σ3

∂Tā
−k

∂ky − ðx ↔ yÞ
�

nn
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i
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nn

��
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Therefore, the thermal Hall conductivities are related by

κāxy ¼ −
k2BT
ℏV

X

nk

c2½gðεān−kÞ�Ωā
n−k

¼ k2BT
ℏV

X

nk

c2½gðεankÞ�Ωa
nk

¼ −κaxy: ð5Þ
In other words, the thermal Hall conductivities are same in
magnitude but opposite in sign. This completes the proof of
Theorem 1.
Proof of Theorem 2.—The set of angles fθ;ϕg in (1) for

the polarized state along the b direction is fπ=2; 3π=4g. After
some algebra [35], one can show that the linear spin wave
Hamiltonian of the b polarized stateDb

k depends on kx and ky
only through the combination cosðkxa=2Þ expð−i

ffiffiffi
3

p
kya=2Þ

and its complex conjugate. Therefore, the linear spin wave
Hamiltonian is an even function in kx, Db

ð−kx;kyÞ ¼ Db
ðkx;kyÞ.

Consequently, the matrix of energy eigenvalues and the
Bogoliubov transformation are even in kx, Eb

ð−kx;kyÞ ¼ Eb
ðkx;kyÞ

and Tb
ð−kx;kyÞ ¼ Tb

ðkx;kyÞ. Since the derivative of an even
function is an odd function,

∂Tb
ð−kx;kyÞ
∂kx ¼ −

∂Tb
ðkx;kyÞ
∂kx : ð6Þ
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In addition, we have

∂Tb
ð−kx;kyÞ
∂ky ¼ lim

ϵ→0

Tb
ð−kx;kyþϵÞ − Tb

ð−kx;kyÞ
ϵ
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ϵ→0
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ϵ

¼
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∂ky : ð7Þ

Therefore, the Berry curvatures at k ¼ ð�kx; kyÞ are related
by

Ωb
nð−kx;kyÞ ¼ i

�
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nn
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which leads to zero thermal Hall conductivity because the
first Brillouin zone (a hexagon centered at k ¼ 0 in the
reciprocal space) is symmetric about kx ¼ 0. This completes
the proof of Theorem 2. Equation (8) also implies that the
Chern numbers Cn ∼

P
k Ωnk of the magnon bands in the b

polarized state are zero.
The fact that Db

k is even in kx can be argued more
heuristically without scrutinizing its explicit form, as
follows. When the field is applied along the b direction,
the spin Hamiltonian possesses a C2 rotational symmetry
about the b axis [44,45]. In principle, C2 acts on both the
spatial coordinates and the spins, C2∶Si → C−1

2 SC2ðiÞ.
However, in the b polarized state, the spin rotation part
is effectively an identity operator since all spins lie exactly
along the axis of rotation. In other words, C2 only affects
the spatial coordinates. In the reciprocal space, the C2

symmetry translates into the invariance of Db
k under

kx → −kx, and the rest of the proof follows.
Corollary.—Theorems 1 and 2 still hold if Heisenberg

interactions, for instance J (J3) between the (third) nearest
neighbors, are added to the KΓΓ0 model, due to the
following reasons: (i) the Heisenberg interaction is pro-
portional to an identity matrix, which is left invariant
under a global rotation of spins; and (ii) the Heisenberg
interaction is isotropic, namely it is the same along all
bond directions. This indicates the robustness of
Theorems 1 and 2 against the choice of spin model for
α-RuCl3, which is suggested to be a JKΓΓ0 model [46] or
a JKΓJ3 model [47–49].
Numerical Results.—Using two sets of interaction para-

meters ðK;Γ;Γ0Þ ¼ ð−1; 0.2;−0.02Þ and ð−1; 0.3;−0.03Þ
that are relevant to α-RuCl3, we numerically evaluate the
thermal Hall conductivity due to magnons, Eq. (2), in the a, b,
and −a polarized states. We first use classical simulated
annealing [50,51] to obtain the critical fields to the polarized

states along the a, b, and −a directions. We set the spin
magnitude to be S ¼ 1=2 in the linear spin wave theory
and assume the strength of the Kitaev interaction to be
jKj ¼ 80 K [46,52] in the calculation of the thermal Hall
conductivity. We also use the interlayer distance d ¼ 5.72 Å
of α-RuCl3 [13,14,27,52].
We plot the thermal Hall conductivity as a function of

temperature for the three polarized states in Figs. 2(a)–2(f).
The field strengths h are chosen such that the system is
indeed in the corresponding polarized states according to the
classical model. We make two important observations from
the results. First, κxy is positive, zero, and negative when the
field is along the a, b, and −a directions, respectively, which
matches the experimentally observed signs of the thermal
Hall conductivity. The sign structure is also consistent with
Theorems 1 and 2. Second, in the a and −a polarized states,
κxy=T is of the order 0.1 × 10−3 W=K2m, which is com-
parable in magnitude to the thermal Hall signals experi-
mentally measured at low temperatures [14,27,29]. For
instance, the maximum value of κ2Dxy =T for ðK;Γ;Γ0Þ ¼
ð−1; 0.2;−0.02Þ is about 0.25 × ðπ=6Þðk2B=ℏÞ, which is half
of the half-quantized value. While there is always a sign
difference between the magnon thermal Hall conductivities
of the a and−a polarized states according to Theorem 1, the
sign of κxy for each of these field directions really depends on
the choice of the interaction parameters, such that κxy of the

FIG. 3. (a) Linear spin wave dispersion εnk of the a and −a
polarized states, and Berry curvature Ωnk in (b) the a polarized
state and (c) the −a polarized state, as functions of momentum k.
n ¼ 1 and 2 are the band indices. The interaction parameters are
chosen to be K ¼ −1, Γ ¼ 0.2, and Γ0 ¼ −0.02. The first
Brillouin zone is indicated by a hexagon. The symbol a that
appears in the units of k and Ωnk is the lattice constant, not to be
confused with the a direction.
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a (−a) polarized state can be negative (positive) in a different
parameter regime.
Furthermore, we numerically verify the symmetries

discussed in the proofs of Theorems 1 and 2, by plotting
the linear spin wave dispersion and the Berry curvature as
functions of momentum [53–55] in the polarized states.
When the field is flipped from the a direction to the −a
direction, the dispersion remains the same, as shown in
Fig. 3(a). However, the Berry curvature changes sign, as
shown in Figs. 3(b) and 3(c). By Eq. (2), the thermal Hall
conductivity gains an overall minus sign. When the field is
along the �a direction, the Chern numbers of the lower
(n ¼ 1) and upper (n ¼ 2) magnon bands are ∓ 1 and �1,
respectively, signifying their topological nontriviality. On
the other hand, when the field is applied along the b
direction, the linear dispersion is symmetric about kx ¼ 0,
as shown in Fig. 4(a). However, the Berry curvature is
antisymmetric about kx ¼ 0, as shown in Fig. 4(b), which
results in cancellations of the summands in Eq. (2),
eventually leading to a zero thermal Hall conductivity.
The magnon bands are topologically trivial, i.e., they have
zero Chern numbers.
Conclusion.—In this Letter, we have shown both ana-

lytically and numerically that the thermal Hall conduc-
tivity due to magnons in the field polarized states along
the a, b, and −a directions is positive, zero, and negative,
respectively, which agrees with the experimentally
observed sign structure [27,29] in the Kitaev material
α-RuCl3. If the half-quantization plateau is present
(absent), then the ground state may be the non-Abelian
spin liquid (polarized state) with Majorana fermions
(magnons). Most importantly, the thermal Hall effect
does occur in both the non-Abelian spin liquid and the
polarized state, and their thermal Hall conductivities have
the same sign structure. Therefore, the sign structure alone
cannot serve as a strong evidence for the non-Abelian spin

liquid. The ultimate test for the non-Abelian spin liquid
will be the half-quantization of the thermal Hall conduc-
tivity at very low temperatures, where the magnon con-
tribution vanishes.
Finally, we have only considered in-plane magnetic

fields in this Letter. In the future, it will be interesting to
investigate the implications of magnons to the thermal
transport in Kitaev magnets under tilted and out-of-plane
magnetic fields, where experiments also suggest the exist-
ence of unusual quasiparticles [14,27,52,56].
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