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In this Letter, we present a molecular theory of nucleation from dilute phases such as vapors or dilute
solutions. The theory can model the nonclassical two-step crystal nucleation seen in many systems. When
applied to study and analyze the crystal nucleation pathways from Lennard-Jones vapor, we find that prior
explanations of the two-step mechanism based on lower barrier height for liquid nuclei is incomplete. The
analysis from the molecular theory reveal that a complete explanation would also require consideration of
anisotropy in the diffusion constants for growth of liquid droplets vis-á-vis the crystal nuclei.
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Although the phenomenon of nucleation has been widely
studied, there still exist gaps in our understanding of its
mechanism. Toward this end, we present a new theory for
nucleation from dilute phases called “molecular theory of
nucleation.” A dilute phase is defined as the one where the
concentration of the component that forms the nucleus is
low, such as vapors and dilute solutions. The basic statistical
mechanics of this theory is similar to the one developed in
Senger et al. [1] and Auer and Frenkel [2]. We then use the
molecular theory to revisit the problem of crystal nucleation
from a Lennard-Jones vapor phase [3,4] and predict the
nucleation rates for a range of values of supersaturation. We
show that the molecular theory can also model the non-
classical two-step mechanism seen in these systems.
Based on previous observations [3,4], we characterize

the nuclei formed during crystal nucleation by two vari-
ables, namely, (i) the number of particles that form a
connected cluster n and (ii) the number of particles within
that cluster that form the largest crystalline nucleus m.
Obviously, by construction, m ≤ n. Now consider a pop-
ulation of such nuclei within a metastable fluid consisting
of N particles in volume V at temperature T. Defining f as
the number density of such nuclei, the kinetics of nucle-
ation can be modeled by the following Fokker-Planck type
equations [5]:

∂f
∂t ¼ −∇ · J; ð1Þ

J ¼ −DmfðeqÞ
∂
∂m

f

fðeqÞ
êm −DnfðeqÞ

∂
∂n

f

fðeqÞ
ên; ð2Þ

where J is the nucleation flux in the ðm; nÞ space, Dm and
Dn are the diffusivities inm and n coordinates, respectively,
and fðeqÞ is the equilibrium number density of the nuclei in
the metastable vapor. In the above equations, it is assumed
that m and n vary continuously and one can differentiate f

with respect to these variables. The changes in m and n
during nucleation are expected to be uncorrelated, and
hence the diffusion tensor is assumed to be diagonal. At
steady state, the above equations reduce to the following
second-order partial differential equation:

∂
∂mDmfðeqÞ

∂
∂m

f

fðeqÞ
þ ∂
∂nDnfðeqÞ

∂
∂n

f

fðeqÞ
¼ 0: ð3Þ

The boundary conditions for Eq. (3) are shown in Fig. 1.
The nucleation rate j is obtained by integrating J over the
boundaries C and D, i.e.,

FIG. 1. Boundary conditions for solving Eq. (3). The letters A,
B, C, D, and E represent the boundaries of the domain for
integration.
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j ¼ jn þ jm ¼
Z
C
J · êndsþ

Z
D
J · êmds;

where ds is the differential arc length. The equilibrium
distribution fðeqÞ is related to the work of formation of the
nucleiWm;n as follows: fðeqÞ ¼ ρv exp ð−βWm;nÞ, where ρv
is the number density of the molecules in the vapor phase. It
is possible to write an exact expression for Wm;n using
statistical mechanics as follows (see Supplemental Material
[6] for the derivation):

βWm;n ¼ −ðn − 1Þ ln ρvΛ3 þ ln n! − nβμex

þ βðF�
n þ ΔFins

n þ ΔFmjnÞ; ð4Þ

βF�
n ¼ − ln

�
1

Λ3ðn−1Þ

Z
e−βUnξðrnÞdrn−1

�
; ð5Þ

βΔFins
n ¼ − ln he−βUσ ζnðrNÞi; ð6Þ

βΔFmjn ¼ − ln hωmðrnÞi; ð7Þ

where μex is the excess chemical potential in the metastable
phase, Un is the energy of the n molecule cluster, and Uσ is
the energy of interaction between the cluster and the
surrounding metastable phase. The physical interpretation
of the various terms on the rhs of Eq. (4) are as follows. F�

n
is the free energy of an n particle cluster with one of the
particles kept fixed. ΔFins

n is the free-energy change upon
insertion of this n particle cluster into the metastable phase,
and ΔFmjn is the free-energy of formation of an m particle
crystalline nucleus within the n particle cluster. The
functions ξ, ω, and ζ are defined as follows:

ξðrnÞ ¼
�
1 if the n particles form a connected cluster

0 otherwise
;

ωmðrnÞ ¼
�
1 ifm particles out of n form the largest crystalline nucleus

0 otherwise
;

ζnðrNÞ ¼
�
0 if any of N − n particles belong to the cluster

1 otherwise
:

These constraints ensure that only the relevant configura-
tions are counted while evaluating the partition function.
If concentration of the component that forms the nucleus

is very low (such as vapors or solutions of sparingly soluble
solutes), then the terms ΔFins

n and ΔFmjn can be assumed to
be independent of the supersaturation. Hence, the depend-
ence of Wm;n on supersaturation is contained in the first and
third terms of Eq. (4), which can be evaluated either from
equation of state for vapor phases or from activity coef-
ficients for solutions. Equation (3) along with Eqs. (4)–(7)
constitute the main result of the molecular theory of
nucleation for dilute phases.
To demonstrate the application of the molecular theory,

we revisit a previous study of crystal nucleation from a dilute
vapor by van Meel et al. [4]. The intermolecular interactions
are modeled by Lennard-Jones potential that has been
truncated and shifted at a cutoff distance, rc ¼ 2.5σ. The
phase diagram for this system is given in the Supplemental
Material [6]. The crystal nucleation is studied at the reduced
temperature T� ¼ 0.45, which is below the triple point. At
this temperature, the coexistence pressure between the vapor
and the solid is P�;sat

v;s ¼ 2.28 × 10−5 and that between the
vapor and the liquid is P�;sat

v;l ¼ 4.28 × 10−5 [4], indicating
that the vapor-liquid equilibrium is metastable. Since the
density of the vapor phase is very low, it can be approxi-
mated as an ideal gas and the values of μex and ΔFins

n can be
set to zero. As a result, Eq. (4) simplifies to

βWm;n ¼−ðn− 1Þ lnðρvΛ3Þþ lnn!þ βðF�
nþΔFmjnÞ: ð8Þ

The criteria used to identify the liquid cluster as well as the
crystal nucleus within the liquid cluster are the same as the
one used in Ref. [4]. A snapshot of the crystal nucleus within
the liquid cluster is given in the Supplemental Material [6].
The quantity F�

n is computed using a variant of the Einstein-
molecule method [7] and ΔFmjn is computed from umbrella
sampling simulations of an n molecule cluster (for details,
see the Supplemental Material [6]). The values of ΔFmjn are
fitted to a model based on a feed forward neural network (for
details, see the Supplemental Material [6]) due to high
degree of nonlinearity. The free-energy landscape for droplet
nucleation Wm¼0jn is fitted to the following equation:

βWm¼0jn ¼ −ðn − 1Þ ln ðρvΛ3Þ þ ln n!þ a1ðn − 1Þ
þ a2ðn − 1Þ2=3 þ a3ðn − 1Þ1=3 þ a4ðn − 1Þ1=6:

ð9Þ

The third and fourth terms on the rhs correspond to volume
and surface dependence, while the fifth and the sixth term are
additional corrections determined empirically. In the
discussion that follows, we discuss the nucleation
mechanism at two pressures; namely, P� ¼ 2 × 10−4 and
P� ¼ 1.03 × 10−4. The motivation for the choice of these
pressures is given in the Supplemental Material [6].
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The computed values of Wm¼0jn and the fit from Eq. (9)
are shown in Fig. 2. As expected, the values of Wm¼0jn
show a maximum, which is the location of the critical liquid
nucleus. The estimates of the size of the critical nuclei from
these plots are in agreement with the results reported in
Ref. [4]. Figure 3 shows a contour plot ofWm;n at these two
pressures. At P� ¼ 2 × 10−4, the free-energy landscape
shows only one maximum at n ¼ 160 and m ¼ 0. At lower

values of n, Wm;n increases monotonically with m. At
around n ¼ 550, the values of Wm;n start to show a
maximum for given droplet size, i.e., at constant n.
These maxima, which represent the barrier to crystal
nucleation within the droplets, are located around m ¼
80 and are nearly insensitive to the value of n. The
occurrence of these maxima, however, does not result in
appearance of a saddle point in the free-energy landscape.
The minimum free-energy path is given by the line m ¼ 0

with a single maximum. As we shall see later, the two-step
mechanism is a result of the anisotropy in the diffusion
constants. If the pressure of the vapor phase is lowered, one
begins to see a saddle point in the free-energy surface. In
Fig. 3(b), we show the free-energy landscape at
P� ¼ 1.03 × 10−4. At this pressure there exist two critical
nuclei: (i) at n ¼ 880 and m ¼ 0 and (ii) at n ¼ 600 and
m ¼ 250. Both these critical nuclei have nearly the same
free-energy barrier of βWm;n ≈ 350. Again, as we shall see
later, the diffusion anisotropy plays a decisive role in the
selection of the nucleation pathway.
To compute the nucleation pathway and the rate, we

solved Eq. (3) numerically using the finite volume method.
The boundaries for integration were set to n� ¼ 1300 and
m� ¼ 400. The values of Dm and Dn were computed from
swarms of molecular dynamics trajectories at the top of the
free-energy barriers. We assume that Dm and Dn are
proportional to m2=3 and n2=3, respectively; i.e., they are
proportional to the surface area of the nuclei. At
P� ¼ 2 × 10−4, the nucleation rate (in reduced units)
was computed to be 1.79 × 10−58. This corresponds to a
rate of 2.4 × 10−18 m−3 s−1 for argon vapor at 64 K and
104 Pa. The solution of Eq. (3) also enables us to determine
the nucleation pathways in these systems. In Fig. 4(a), we
show 100 streamlines depicting the flux of nucleation on
top of the free-energy landscape. The starting points of each
streamline were chosen from an equilibrium distribution of
precritical nuclei in the subcooled vapor. The computed
nucleation pathways clearly deviate from the minimum
free-energy path and show a two-step mechanism for vapor
to crystal nucleation. The first nucleation step is a conven-
tional barrier crossing step leading to formation of liquid
droplets. The crystallinity of most of the critical droplets are
negligible but some can contain crystal nuclei with value of
m ¼ 20. The existence of the second nucleation step, even
though the free energy is continuously decreasing, lies in
the anisotropy in the diffusion constants. The ratio
Dm=Dn ≈ 7 × 103 because the low density of the vapor
phase causes the rate of droplet growth to be very slow. In
the absence of diffusion anisotropy, the nucleation pathway
follows the minimum free-energy path, as can be seen in
Fig. 4(b), and the ratio jm=jn ¼ 3.4 × 10−21, indicating
hardly any crystal nucleation events. At P� ¼ 1.03 × 10−4,
we see another consequence of the diffusion anisotropy.
The diffusion anisotropy is Dm=Dn ≈ 104 and the nucle-
ation rate (in reduced units) is 1.78 × 10−158. This
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FIG. 2. Variation ofWm¼0jn vs n at T� ¼ 0.45. The symbols are
values computed from simulations and the line is the prediction
using Eq. (9). The blue color data are at P� ¼ 1.03 × 10−4 and the
green color data are at P� ¼ 2.0 × 10−4. The size of error bars
correspond to a confidence interval of 90%.
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FIG. 3. Contour plots of the free-energy landscape Wm;n for
vapor to crystal nucleation at (a) P� ¼ 2 × 10−4 and (b)
P� ¼ 1.03 × 10−4.
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corresponds to a rate of 2.4 × 10−118 m−3 s−1 for argon
vapor at 64 K and 5 × 103 Pa. As a result, even though the
free-energy barriers for the two critical nuclei are nearly
equal, almost all of the nucleation pathways pass through
the saddle point corresponding to the crystal nucleus [see
Fig. 5(a)]. This is reflected in the value of the ratio
jm=jn ¼ 4.9 × 109. The initial fluctuation, however, con-
sists of formation of liquid droplets, but these droplets are
still precritical when the formation of crystal nuclei occurs
inside them. If we discount the diffusion anisotropy, then
we observe two distinct nucleation pathways [see Fig. 5
(b)]: one where hardly any crystal nucleation occurs in
droplets up to size n ¼ 1300, and the other where nucle-
ation of crystal from vapor occurs in a single step. In the
second pathway, the initial fluctuation contains a signifi-
cant amount of crystalline structure. The computed value of
the ratio jm=jn ¼ 14.6 reflecting that both the nucleation
pathways are competitive. The low value of the nucleation
rate indicates that at these temperatures, which lie just
below the triple point, the nucleation mechanism for
realistic rates would always involve formation of liquid
droplets. Indeed, experimental studies of nucleation from
argon vapor at temperatures below the triple point show the
formation of liquid droplets [8]. It is also one of the
strengths of the molecular theory approach that one is able

to compute such low rates of nucleation, which would
otherwise require much longer simulations using other
methods [3,4].
While the deviation of the transition paths from the

minimum free-energy path in activated systems due to
diffusion anisotropies has been known for some time [9]
and also studied within the context of crystal nucleation
[10], its role towards changing the mechanism from one-
step to two-step has not been shown before. Previous
studies have either ignored the role of diffusion
anisotropy [11] or given it a cursory attention [12],
and hence their explanations of the two-step mechanism
were incomplete.
Finally, in Fig. 6, we plot the nucleation rate for a range

of supersaturations as predicted by the molecular theory. In
this calculation, Dn is assumed to be directly proportional
to ρv, while Dm is assumed to be independent of ρv. The
overall computational effort needed to calculate this curve
is similar to that needed in simulation [3,4] of nucleation at
a single value of supersaturation. In the inset, we compare
the predictions of the molecular theory with nucleation rate
for liquid drops using the classical nucleation theory (since
the initial fluctuation is that of a liquid cluster). The
nucleation rate from classical nucleation theory jCNT is
given by

0 100 200 300 400
Crystal Size (m)

200

400

600

800

1000

1200

D
ro

pl
et

 S
iz

e 
(n

)

50

100

150

200

250

300

350

400

0 100 200 300 400
Crystal Size (m)

200

400

600

800

1000

1200

D
ro

pl
et

 S
iz

e 
(n

)

50

100

150

200

250

300

350

400

(a)

(b)

FIG. 5. Streamlines (red lines) showing flux of vapor to crystal
nucleation on top of the free-energy landscape at P� ¼ 1.03 ×
10−4 (a) with and (b) without diffusion anisotropy.
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FIG. 4. Streamlines (red lines) showing flux of vapor to crystal
nucleation on top of the free-energy landscape at P� ¼ 2.0 ×
10−4 (a) with and (b) without diffusion anisotropy.
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jCNT ¼ Dnρv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δμ

6πkBTn�

s
exp

�
−
ΔG�

kBT

�
;

Δμ ¼ kBT ln ðP=Psat
v;lÞ; R ¼ 2γ

jρlΔμj
;

n� ¼ 4

3
πR3ρl; ΔG� ¼ 16πγ3

3jρlΔμj2
;

where γ is the surface tension and ρl is the density of the
liquid phase. The values of γ and ρl were taken from
Ref. [4] and are equal to 1.07 and 0.905, respectively. The
nucleation rate predicted by the molecular theory is higher
than jCNT. The ratio j=jCNT shows a minimum that roughly
corresponds to pressures where one starts to see crystal
nucleation in precritical liquid droplets.
The usefulness of the molecular theory extends beyond

describing crystal nucleation from vapor phases.
Simulations of crystal nucleation from solutions are
plagued by many technical challenges [13]. Unlike nucle-
ation from a melt, the mechanism of nucleation from
solutions is dominated by slow diffusion of solute mole-
cules from the bulk to the crystal-solution interface. There
is also a challenge of maintaining constant supersaturation
within the bulk as the nuclei in the solution grow [14].
Through the use of Eq. (4), these difficulties encountered in
the simulations can be overcome.
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