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The Kerr geometry admits the Carter symmetry, which ensures that the geodesic equations are
integrable. It is shown that gravitational waveforms associated with extreme-mass-ratio inspirals involving
a nonintegrable compact object display “glitch” phenomena, where the frequencies of gravitational waves
increase abruptly, when the orbit crosses certain spacetime regions known as Birkhoff islands. The presence
or absence of these features in data from upcoming space-borne detectors will therefore allow not only for
tests of general relativity but also of fundamental spacetime symmetries.
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Introduction.—One of the main targets for space-borne
gravitational wave (GW) detectors, such as the Laser
Interferometer Space Antenna (LISA) and Taiji [1,2], are
extreme-mass-ratio inspirals (EMRIs). These binaries
involve a (super)massive black hole (BH) and a companion
whose mass is negligible (mass ratio ≲10−4) relative to the
primary. This latter aspect, which implies that the inspiral
dynamics are well approximated as the geodesic motion of
the companion through the gravitational field generated by
the primary, even close to the final plunge [3] (though see
also Ref. [4]), means that EMRIs provide unparalleled
information about the governing theory of gravity [5–7]. In
particular, general relativity (GR) predicts that the Kerr
metric uniquely describes the gravitational field of astro-
physically stable BHs [8]. Therefore, if EMRIs with
significantly non-Kerr trajectories present themselves in
the LISA or Taiji data, this would represent a “smoking
gun” for the breakdown of GR [9–11].
One interesting possibility of a non-GR signature relates to

the integrability of the orbit [12–17]. The Kerr metric is
stationary and axisymmetric and therefore possesses two
Killing vectors, which lead to the conservation of energy and
angular momentum for relativistic particles traversing the
gravitational field. Additionally, the Kerr metric is suffi-
ciently special, algebraically speaking, so as to admit a
nontrivial Killing tensor [18], which provides an additional
constant of motion and leads to the Liouville integrability of
the geodesic equations; Kerr geodesics do not display chaotic
phenomena [19]. Distortions in the Hamiltonian describing
geodesic motion in the Kerr spacetime may either preserve
the integrability or not, depending on their exact character, in
accordwith theKolmogorov-Arnold-Moser theorem [20,21].
Even when a nonintegrable perturbation is introduced

into the Kerr Hamiltonian, some orbits necessarily remain
periodic [22,23]. From a phase-space perspective, however,
when the perturbation is nonintegrable, small “islands” of
stability come to surround the surviving periodic orbits
[24]. These islands have the property that, as a particle

passes through them, the ratio of longitudinal and trans-
verse frequencies associated with the orbit remains constant
[25,26]. In this way, the orbital dynamics are expected to
display a transient plateau feature [27] as gradual radiation
reaction can cause orbits to weave in and out of islands.
While this leads to clear signatures from a dynamical
systems perspective [12–15,17], we show here that occu-
pancy in an island leads to a noticeable “glitch” (i.e., a rapid
though short-lived increase, akin to that which is observed
in pulsars) in the GW frequency. However, as observed in
the LISA pathfinder mission [28], instrumental noise
artifacts can also lead to similar phenomena in the data
stream (see Fig. 2 in Ref. [29]). The main contribution of
this Letter is to demonstrate that abrupt frequency increases
during an EMRI may have a genuine astrophysical origin
related to the fundamental spacetime symmetries associated
with supermassive compact objects, and discarding them
a priori as instrumental artifacts may miss crucial physics.
Spacetime geometry.—Theoretical deviations from a Kerr

description for dark, compact objects canbebroadly classified
into two categories: those which introduce generic, though
integrable, deformations into the geodesic Hamiltonian, and
those which introduce nonintegrable deformations [30–32].
To give a concrete example of how these features appear at the
level of the spacetime metric, we consider the geometry
introduced in Ref. [17]. In Boyer-Lindquist coordinates
ðt; r; θ;ϕÞ, the metric we operate with reads

ds2 ¼ −
Σ½ðαQ=rÞM3 þ Δ − a2AðrÞ2sin2θ�

½ðr2 þ a2Þ − a2AðrÞsin2θ�2 dt2

−
2a½ðr2 þ a2ÞAðrÞ − Δ�Σsin2θ
½ðr2 þ a2Þ − a2AðrÞsin2θ�2 dtdϕ

þ ðαQ=rÞM3 þ Σ
Δ

dr2 þ Σdθ2

þ Σsin2θ½ðr2 þ a2Þ2 − a2Δsin2θ�
½ðr2 þ a2Þ − a2AðrÞsin2θ�2 dϕ2; ð1Þ
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whereΣ ¼ r2 þ a2 cos2 θ,Δ ¼ r2 − 2Mrþ a2, andAðrÞ ¼
1þ r−2α22M2 for mass M and spin a. The line element (1)
resembles the Kerr geometry, though it contains two addi-
tional parameters. One of these, α22, was first considered by
Johannsen [30], and introduces a generic, though integrable,
deformation fromKerr (henceforth referred to as a “deformed-
Kerr”metric). The other, αQ, breaks the Carter symmetry and
leads to a nonintegrable perturbation (“non-Kerr” metric)
[17]. In the limit where these two latter parameters vanish, the
Kerrmetric is recovered and the spacetime is an exact solution
in GR and various other theories of gravity [33]. For a wide
range of values of α22 and αQ, the metric described by Eq. (1)
exists as an exact, vacuum solution in some particular family
of mixed scalar-fðRÞ theories [34].
Geodesic dynamics and nonintegrability.—Noting that

the metric components gμν within Eq. (1) are functions of r
and θ only, so that the spacetime is stationary and
axisymmetric, Hamilton’s equations for a particle of mass
μ with momenta pμ ¼ _xμ imply that _pt ¼ 0 ¼ _pϕ, where
the overhead dot denotes differentiation with respect to
proper time. In general, there exist three constants of
motion associated with geodesic dynamics: the orbital
energy E, angular momentum Lz, and the particle mass
itself μ. The Kerr spacetime (α22 ¼ αQ ¼ 0), in addition to
admitting the three linear symmetries detailed above, also
possesses a quadratic symmetry due to the existence of a
nontrivial rank-2 Killing tensor [18]. This additional
integral of motion, giving rise to the Carter constant
(which generally exists even for αQ ¼ 0, α22 ≠ 0),
implies the integrability of the geodesic equations as a
whole [27].
A generic orbit for a stationary spacetime can be

characterized by two librationlike frequencies, ωr and ωθ,
which describe the transition rate between periastron and
apastron and longitudinal oscillations around a given plane,
respectively [25,26]. Those orbits for which ωr is an integer
multiple ofωθ, or vice versa, are called resonant. At the level
of orbital dynamics, the Kolmogorov-Arnold-Moser and
Poincaré-Birkhoff theorems [20,21] together imply that half
of the resonant orbits remain stable while half become
unstable when introducing a nonintegrable perturbation into
the Kerr (or any other regular) Hamiltonian. In the phase
space, small islands of stability (Birkhoff islands) come to
surround each of the stable orbits, while the unstable orbits
form chaotic layers which surround the islands. A key
property of these islands is that the ratio ωr=ωθ, often called
the rotation number, remains constant there and forms a
dynamical plateau [27].
The quadratic symmetry described above is preserved for

any value of α22, however, and thus the equations of motion
remain integrable. On the other hand, for nonzero values of
the parameter αQ and spin, the spacetime (1) does not admit
the Carter symmetry. Therefore, for astrophysical objects
described by the line element (1) with αQ ≠ 0, Birkhoff
islands form within the phase space [17]. Depending on the

exact value of the parametersM, a, α22, and αQ, the location
and width of the islands vary [13,17]. More details on the
properties of the metric (1) and its relationship with existing
astrophysical constraints can be found in Ref. [17].
It is the purpose of this work to explore the theoretical

manifestation of a plateau at the level of the gravitational
waveform. In particular, a spacetime for which the geodesic
equations are nonintegrable will possess a scattered series
of islands. When a companion object passes through one of
these islands it undergoes an abrupt orbital evolution,
which leads to a sudden jump in the GW frequencies.
The frequency jumps we observe are similar to that which
is sometimes seen in pulsar timing experiments, namely
glitches. For better or worse, jumps of this sort are also
known to occur due to effects of instrumental origin
[28,29]. It is important therefore that the phenomenology
of nonintegrability is better understood, as meaningful
physics may be discarded if it is a prori assumed that
frequency jumps are not of astrophysical origin.
Orbital evolution and the kludge scheme.—The orbital

dynamics governing an EMRI are not purely geodesic since
GW emission leads to a dissipation of the particle
4-momenta. In general, the equations describing the motion
of a particle in a spacetime are the Einstein equations (or
some appropriate generalization) together with the conver-
sation lawsTαβ

;β ¼ 0. Treating backreaction at the linear level,
the conservation laws lead to the MiSaTaQuWa equations
[35,36], which are known to be equivalent to the geodesic
equations on a modified spacetime, g̃μν ¼ gμν þ hRμν, where
the superscript R stands for the regularized metric perturba-
tion (see Sec. 19 of Ref. [37] for a discussion). This latter
term, although necessarily small and satisfying jjhRμνjj ≪
jjgμνjj, is time dependent and therefore allows for the particle
to potentially enter and leave Birkhoff islands during its
orbital lifetime.
In any case, the above shows that self-force sourced by

backreaction can be modeled by introducing time-depen-
dent shifts into the momenta pα of the particle, which can
be related to the specific energy and angular momentum
through E ¼ −pt∂t and Lz ¼ pϕ∂ϕ. This observation
forms the basis for the adiabatic approximation introduced
by Mino [38] (see also Ref. [39]), valid when the change in
any quantity that characterizes the orbit (such as energy or
angular momentum) is sufficiently small over a single orbit
[40]. In this sense, taking an average of the MiSaTaQuWa
equations essentially leads to some evolution equations for
E and Lz and the remaining momenta. These equations are
still, however, relatively difficult to work with. A hybrid
kludge scheme [41,42] can instead be used where the
aforementioned equations are expanded up to some desired
post-Newtonian and multipolar orders.
In this Letter, we adopt the kludge scheme described

above to perform the orbital evolutions. Up to second post-
Newtonian order the relevant equations for the evolution of
an orbit are lengthy, though are given explicitly by
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Eqs. (37)–(39) in Ref. [43]. These are the equations used
here, though with one important modification.
In particular, at second post-Newtonian order, the kludge

scheme involves the mass quadrupole moment M2 of the
system. To construct the non-Kerr inspiral we apply a
modification to the mass quadrupole moment, similar to
that in Refs. [13,44], where M2 ¼ −Ma2 − 1

3
M3αQ for the

metric (1). The parameter α22 introduces current multiple
moments that appear at higher post-Newtonian order, and
therefore does not explicitly enter into the kludge equations
of motion. While the exact definition for the multipole
moments can depend on the theory under consideration
[45], we have checked that our results are qualitatively
unchanged for different choices of M2 (e.g., M2 ¼ MKerr

2 ).
We further linearize the adiabatic energy and angular
momentum evolution as in Ref. [46], viz. E1 ¼
E0 þ dE=dtj0NrTr and Lz;1 ¼ Lz;0 þ dLz=dtj0NrTr,
where E0; Lz;0 are the initial energy and angular momen-
tum, respectively, dE=dtj0; dLz=dtj0 are the radiation loss
rates calculated using the kludge expressions at the begin-
ning of the inspiral, respectively, and Tr is the time that the
orbit takes to travel from the periastron to apoastron and
back. The aforementioned equations are updated every Nr
cycles for the whole EMRI evolution.
Gravitational waves and frequency evolution.—We

model the gravitational waveform using the Einstein-
quadrupole approximation to understand the main phe-
nomenology of the transient features acquired through
passage of an island. A more sophisticated approach would
involve solving the (appropriately generalized, see, e.g.,
Refs. [47,48]) Teukolsky equations directly to deduce the
GW characteristics through the Weyl scalars. However,
such an analysis is considerably more complicated and
does not help to elucidate the main new features presented
in this work: the existence of glitches from chaotic
inspirals.
In general, an incoming GW can be projected onto the

mutually orthogonal þ and × polarization states by
introducing two vectors, p¼n×Z=jn×Zj and q ¼ p × n,
which are defined in terms of a unit vector n which points
from the source to the detector for particle position ZiðtÞ.
Note that some modified theories of gravity predict the
existence of up to six polarization states, a detection of
which would also conclusively signal the breakdown of GR
[49]. These extra polarization states are not, however, tied
to the symmetries of the spacetime, since even a Kerr black
hole can emit scalarlike waves in an fðRÞ theory, for
instance [47], and we assume they are negligible. At a
luminosity distance d from the source and in the quadru-
pole approximation, the GW amplitudes read hþ;×ðtÞ¼
2μϵþ;×

ij ½aiðtÞZjðtÞþviðtÞvjðtÞ�=d for velocity, viðtÞ ¼ dZi=
dt, and acceleration aiðtÞ ¼ d2Zi=dt2 [46], where the þ
and × polarization tensors have components ϵijþ ¼ pipj −
qiqj and ϵij× ¼ piqj þ pjqi, respectively.

The first of the deformation parameters introduced in
Eq. (1), α22, has the strongest effect on observables when
the object is near the extremal limit a≲M [30]. Since
accretion torques are expected to spin-up supermassive
BHs that exist within galactic centers [50], even a small
value of α22 can lead to significant modifications in the
orbital dynamics [17]. We thus consider a near-extremal
object with a ¼ 0.99M throughout.
Although the LISA data stream consists of two linearly

independent channels, with each one being better suited to
the detection of particular types of signals [51], we will
work, for simplicity, within the single channel approxima-
tion and neglect any noise in the data stream to demonstrate
the main features of detection. In what follows, we compare
frequency evolution and power spectral densities (PSDs)
of two EMRIs, consisting of a small-mass companion
(a stellar mass BH or a neutron star) with μ ¼ M⊙ and a
supermassive compact object with M ¼ 106 M⊙
(μ=M ¼ 10−6); the first evolves on a non-Kerr spacetime
and crosses a Birkhoff island of 2=3 resonance, while the
second evolves on a deformed-Kerr spacetime and passes
through a 2=3 resonance, though no Birkhoff islands are
present anywhere in the phase space. The detectability of
the PSD of such EMRIs is demonstrated in Fig. 1, where we

FIG. 1. Power spectral density of aKerr (green), a non-Kerr (red),
and a deformed-Kerr (blue) EMRI consisting of a light companion
with μ ¼ M⊙ and a supermassive compact object with M ¼
106 M⊙ (μ=M ¼ 10−6) and a ¼ 0.99 M at a luminosity distance
d ¼ 50 Mpc, overplotted on theLISApower spectral density curve
with SNR ¼ 1 (dashed curve). All small-mass companions begin
their inspiral withE0 ¼ 0.95 μ,Lz;0 ¼ 3 Mμ and initial conditions
rð0Þ ¼ 5.70903M; _rð0Þ ¼ 0.1; θð0Þ ¼ π=2, with the remaining
_θð0Þ being defined by the constraint equation (7) in Ref. [17].
The most prominent Fourier peaks are presented in the enlarged
insets, while the remaining peaks correspond to higher harmonics.
The evolution time of the EMRI is t ¼ 2 × 106 M, which corre-
sponds, roughly, to 3 months of detection. The deformation
parameters are αQ ¼ −1.8 for the non-Kerr and α22 ¼ −2.2 for
the deformed-Kerr inspiral, while for the Kerr inspiral
αQ ¼ α22 ¼ 0.
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assume a source at d ¼ 50 Mpc, where the LISA PSD is
also plotted with signal-to-noise ratio (SNR) equal to unity.
For completeness, we further include the PSD of a Kerr
EMRI. The most prominent peaks, including various higher
harmonics, appear in the range of maximal sensitivity of
LISA, between 10−3 and 10−2 Hz. Although the PSD peaks
of Kerr and deformed-Kerr EMRIs, which share the same
fundamental spacetime symmetries, have smooth profiles
(see insets in Fig. 1), non-Kerr EMRIs, which cross
Birkhoff islands, will typically undergo a frequency modu-
lation during the crossing, where the PSD peaks (and the
amplitude of the Fourier spectrum of the GW) abruptly
decrease by up to 2 orders of magnitude (see right-hand
inset in Fig. 1). This substantial drop in amplitude should
lead to a significant effect in the frequency evolution of a
non-Kerr EMRI.
In Fig. 2 we show the frequency evolution of the most

prominent spectral peaks from a deformed-Kerr and a non-
Kerr EMRI with the same initial conditions (we have
chosen the deformation parameters for each EMRI so that
the initial rotation numbers of the orbits agree to ∼0.1%).
When the underlying spacetime symmetry is similar to that
of Kerr, the frequency evolution follows a linear growth as
the object inspirals toward its supermassive companion
Although the deformed-Kerr EMRI passes through a 2=3
resonance, no obvious effect is present. On the other hand,
when a non-Kerr EMRI crosses through a Birkhoff island
of 2=3 resonance a glitch interrupts the linear evolution of
the GW frequencies. Although we only demonstrate the
effect of the most prominent resonant island (corresponding
to a width of ∼0.05M and average crossing time ∼4 ×
104M ∼ 3 days for the parameters used), other islands
surrounding less prominent resonant stable orbits still
exhibit a similar, but less profound, glitch.

Discussion.—Future space-borne GW detectors, such as
LISA and Taiji [1,2], will unlock the detection realm to a
wider range of GW sources. The detection of GWs from
EMRIs, which consist of small mass companions orbiting
around supermassive compact objects, in much wider orbits
than those already observed by ground-based detectors,
will provide significant information on the validity of GR in
the strong-field region. If the astrophysical environment
around EMRIs modifies the underlying theory of gravity in
such a way that the integrability of the equations of motion
is broken, then the orbital phase space of the small
companion will contain a series of Birkhoff islands, by
virtue of the chaotic dynamics [24].
By employing the hybrid kludge scheme [41–43] to

evolve EMRIs in a deformed and a non-Kerr spacetime,
introduced in Ref. [17], and the Einstein-quadrupole
approximation [52] to model GW emission, we have
explored the detectability of transient phenomena in the
gravitational waveform, which designate a crossing through
a Birkhoff island, and thus probe spacetime symmetry and
constrain a potential departure from a Kerr description.
Our results indicate that the continuous evolution of GW

frequencies is abruptly, though consistently, broken during
a Birkhoff island crossing, which leads to a glitch, similar
to that seen in pulsars and in the LISA pathfinder data
stream, which until now is assumed to be instrumental
noise. The glitches displayed here are present in the
majority of the periodograms of the prominent GW
frequencies and have a clear astrophysical origin.
Taking into account that a plethora of initial orbital

parameters can eventually lead an inspiral through an island
of strong resonance [12,13], and that an object can
potentially occupy an island for up to a week [53], we
speculate that space-borne detectors should be able to
unveil or constrain the existence of chaotic phenomena
in EMRIs, which may be associated with deviations from

FIG. 2. Periodogram of a deformed-Kerr (left) and a non-Kerr EMRI (right) GW, plotted below the most prominent GW peak, as
depicted in the right-hand inset of Fig. 1.
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GR (though cf. Refs. [54–57]). Furthermore, we argue that
such abrupt frequency jumps may have a true astrophysical
origin, thus discarding them a priori from the data stream
as instrumental artifacts may miss potential smoking gun
physics.
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