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Bell nonlocality represents the ultimate consequence of quantum entanglement, fundamentally under-
mining the classical tenet that spatially separated degrees of freedom possess objective attributes
independently of the act of their measurement. Despite its importance, probing Bell nonlocality in
many-body systems is considered to be a formidable challenge, with a computational cost scaling
exponentially with system size. Here we propose and validate an efficient variational scheme, based on the
solution of inverse classical Ising problems, which in polynomial time can probe whether an arbitrary set of
quantum data is compatible with a local theory; and, if not, it delivers the many-body Bell inequality most
strongly violated by the quantum data. We use our approach to unveil new many-body Bell inequalities,
violated by suitable measurements on paradigmatic quantum states (the low-energy states of Heisenberg
antiferromagnets), paving the way to systematic Bell tests in the many-body realm.

DOI: 10.1103/PhysRevLett.126.140504

Introduction: Bell tests and quantum certification.—
Quantum correlations, such as entanglement [1],
Einstein-Podolsky-Rosen correlations [2,3], and Bell
correlations [4,5], are common features of microscopic
ensembles of quantum degrees of freedom (d.o.f.), such as
the electronic and nuclear spins in atoms and molecules [6],
or pairs of photons produced by parametric down-con-
version [7]. Their persistence in many-body systems is a
central issue: an obstruction to the scalability of quantum
correlations would be the core feature of a putative
quantum-to-classical transition [8,9]; and, in parallel, they
are the essential resource for most quantum technologies of
second generation [10]. In view of all this, the robust
certification of quantum correlations in many-body systems
stands as a central problem for theoretical as well as
experimental quantum physics.
The most robust certification scheme is undoubtedly

offered by the device-independent (DI) approach, relying
on the violation of a Bell inequality—a so-called Bell test
—which does not assume anything about the quantum
system except what can be assessed experimentally.
Specifically, we assume that a many-body system is
composed of N spatially separated d.o.f.—that we imagine
as arranged over a lattice—on which k different
observables (inputs) can be experimentally measured;
and each of them can deliver p results (outputs). We

indicate with σðiÞa the p possible values of the ath observ-
able (a ¼ 0;…; k − 1) on the ith d.o.f. (i ¼ 1;…; N)—
these choices define a ðN; k; pÞ scenario for a Bell test
[Fig. 1(a)]. Moreover, we indicate with hfðσÞiQ (where

σ ¼ fσðiÞa g) the average value of any function f of the
measurement outputs—hereafter denoted as quantum data.
The DI approach certifies the strongest form of quantum
correlations—Bell nonlocality—when the quantum data
violate a Bell inequality [4,5], a constraint for all local-
variable (LV) models, designed to capture the most general
form of classical correlations. First envisioned by Bell [11],
such models are defined by a joint probability distribution
PLVðσÞ for all measurement outcomes, treated as classical
variables [12]. If the dataset involves the outcomes of
incompatible measurements, such a joint probability dis-
tribution is not admitted by quantum mechanics, creating a
fundamental tension with LV models. In the following we
indicate with h…iLV an average over the PLV distribution.
The simplest Bell inequalities are linear combinations of
few-body expectation values:

XN

i¼1

Xk

a¼1

αðiÞa hσðiÞa iLVþ
X

i<j

Xk

a;b¼1

βði;jÞa;b hσðiÞa σðjÞb iLVþ���≥−Bc;

ð1Þ

where −Bc is the so-called classical bound. Geometrically,
every such inequality defines a hyperplane in the space
of correlations, separating two half-spaces, one of which
contains all datasets compatible with LV models. The
intersection of these half-spaces defines the so-called
local polytope [Fig. 1(b)]. Certifying Bell nonlocality
corresponds then to assessing that the quantum data of
interest lie outside the local polytope [Fig. 1(c)].
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The quantum membership problem.—The search for Bell
inequalities violated by quantum many-body data for sys-
tems withN ≫ 1 represents a formidable task. Indeed, given
a quantum dataset fhfrðσÞiQ; r ¼ 1;…; Rg—where the

frðσÞ’s are terms such as σðiÞa or σðiÞa σðjÞb in Eq. (1)—the
local polytope has pkN vertices, and its full reconstruction
has a prohibitive (exponential) cost [4]. Many-body
Bell inequalities have been successfully identified in the
past [13–15], but they are violated only by selected quantum
states [16]. More systematic strategies have been devised
recently that either restrict the search to Bell inequalities
which are fully symmetric under exchange of lattice-site

indices [namely, with αðiÞa ¼ αa, β
ði;jÞ
a;b ¼ βa;b, etc., in Eq. (1)]

[17,18], or to inequalities which only involve a restricted
range of correlations under translational invariance [19],
circumventing the exponential cost but losing in generality;
an alternative strategy is that of approximating the local
polytope from the outside [20], with an exponential cost for
the approximation to converge to the exact polytope. Hence
the quantum membership problem (“Does a set of quantum
data belong to the local polytope?”) is considered to be an
exponentially hard one. Our main result is to exhibit an
algorithm solving this problem in polynomial time under
very general assumptions; and to validate such an approach
by discovering new Bell inequalities violated by relevant
quantum many-body states in the thermodynamic limit.
Solving the membership problem by inverse statistical

methods.—Our approach to the above problem consists of
trying to explicitly build an LV model PLV which repro-
duces the quantum data, namely, such that hfrðσÞiLV ¼
hfrðσÞiQ for all r ¼ 1;…; R (within the error bar of the
quantum data). In a realistic scenario, R scales polyno-
mially with N; therefore, if such a distribution exists, it is
certainly not unique, because it can be parametrized by
many more parameters (pkN − 1 independent values) than
the number R of constraints. Yet, if multiple distributions

exist, there is one of them which is least biased, para-
metrized by the minimal number of parameters. This
distribution maximizes Shannon entropy under the con-
straints [21,22], or equivalently it minimizes the “free-
energy” functional

F½PLV� ¼
X

σ

PLV logPLV −
X

r

KrðhfriLV − hfriQÞ: ð2Þ

The solution to the minimization problem takes the form of
a Boltzmann distribution [21]

PLVðσÞ ¼ exp½
X

r

KrfrðσÞ�=Z ð3Þ

in which the Lagrange multipliers Kr (forming the vector
K ¼ fKrg) play the role of coupling constants defining an
effective Hamiltonian Hðσ;KÞ ¼ −

P
r KrfrðσÞ, and Z is

the corresponding partition function. Therefore, our central
observation is the following: if a LV model reproducing the
quantum data exists, it can be found in the form of Eq. (3)
upon adjusting the coupling constants. In the case of binary
outcomes (p ¼ 2), to which we hereafter specialize, the σ’s
are classical Ising variables (σ ¼ �1), and therefore the LV
model represents the equilibrium Boltzmann distribution of
a generalized classical Ising model with Hamiltonian H.
In summary, without loss of generality, the problem is

reduced to adjusting the coupling constants of a classical
Ising model so as to fit the quantum data. This, however, is
a well-known problem in statistical inference, namely, an
inverse Ising problem [23], which has the remarkable
feature of being a convex optimization problem upon
introducing the following cost function:

LðKÞ ¼ logZðKÞ −
X

r

KrhfriQ; ð4Þ

(a) (b) (c) (d)

FIG. 1. Variational search of local-variable models. (a) Sketch of the generic ðN; k; pÞ setting for Bell tests: each d.o.f. of a quantum
many-body system is subject to the measurement of k different operators M̂a, with p different outcomes σa for each measurement.

(b) Our Bell test of a set of quantum data—comprising arbitrary moments (hσðiÞa i, hσðiÞa σðjÞb i, etc.) of the statistics of the measurement
outcomes—consists of generating a family of local-variable (LV) models which approximate the quantum data at best, describing a
trajectory (black line) within the local polytope bounding all predictions of LV models; (c) if the LV predictions maintain a finite
distance from the quantum data, this reveals the existence of a Bell inequality (corresponding to the closest polytope facet) which the
quantum data violate. (d) Frustrated correlation pattern among local variables in a (2,2,2) setting, which an LV model should reproduce
in order to realize the correlations of a Bell pair ðj↑1↓2i − j↓1↑2iÞ=

ffiffiffi
2

p
.
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where L is related to (minus) the log likelihood. Indeed, the
Hessian of the cost function,

Hrs ¼
∂2L

∂Kr∂Ks
¼ hfrfsiLV − hfriLVhfsiLV; ð5Þ

is the covariance matrix of the fr functions, and it is
therefore semidefinite positive. The convexity of the cost
function implies that a simple gradient-descent algorithm,
following the gradient G ¼ fGrg of the cost function:

Gr ¼
∂L
∂Kr

¼ hfriLV − hfriQ; ð6Þ

is guaranteed to converge to the global minimum [24].
Building a data-tailored Bell inequality.—Our algorithm

presents then two possible behaviors: (i) if the quantum
data are reproducible by an LV model, it converges to well-
defined couplings K which lead to the vanishing of the
gradientG [Eq. (6)], namely, of the distance vector between
the quantum data and the LV predictions [Fig. 1(b)];
(ii) otherwise, the quantum data lie outside of the local
polytope, so that G remains necessarily finite, leading to a
runaway to infinity of the coupling constants as updated by
the gradient-descent algorithm: K0

r ¼ Kr − ϵGr (with
ϵ ≪ 1 the step variable in the numerical implementation
of the gradient descent). In this case, the algorithm
converges in practice when the minimal distance jG∞j2 ¼
minLV

P
rhðfriLV − hfriQÞ2 between the LV predictions

and the classical data is attained numerically. This con-
vergence criterion marks the fact that the variational search
of the LV model has hit from the inside a facet of the
polytope [Fig. 1(c)], defining a Bell inequality violated by
the quantum data. The latter inequality stems from a simple
rewriting of the condition jG∞j2 > 0, namely,

X

r

Gr;∞hfriQ < min
LV

X

r

Gr;∞hfriLV ¼ −Bc: ð7Þ

The minimization of the right-hand side of Eq. (7)—
defining the classical bound Bc—is attained as the ground-
state energy of the classical Hamiltonian K (not to be
confused with H): KðσÞ ¼ P

r Gr;∞frðσÞ. Interestingly,
we observe that KðσÞ is necessarily a frustrated
Hamiltonian, namely, a function whose minimum is not
obtained by minimizing each term Gr;∞frðσÞ individually.
Indeed, in the absence of frustration, the quantum data has
no chance of being strictly lower than the classical bound
defined in Eq. (7).
Before demonstrating the practical use of our approach,

we would like to point out its computational efficiency. Its
strength relies fundamentally upon its data-driven nature:
instead of trying to reconstruct the whole local polytope
(potentially producing a large number of unviolated Bell
inequalities), it directly tests for the nonlocality of a
particular dataset; and it delivers the Bell inequality most

strongly violated by the available quantum data. Its main
computational cost is imposed by the calculation of the
statistical averages hfrðσÞiLV: such a calculation is generi-
cally efficient and scalable to arbitrary N by using classical
Monte Carlo, unless the classical Ising Hamiltonian
Hðσ;KÞ happens to be a spin-glass model—something
which is categorically avoided if the quantum data have
elementary spatial symmetries, and if the local observables
are not chosen randomly. Otherwise, the computational
cost to reach a relative precision of ε scales at worst as
OðNnþz=d × ε−2Þ if the fr’s are correlation functions
involving up to n points—here z is the dynamical critical
exponent, which is nonzero [and Oð1Þ] only if the classical
Ising model sits exactly at a critical point (see Supplemental
Material for further discussion [25]).
As explained above, our approach starts from a thought-

fully chosen set of quantum data: in the following we
illustrate it in three paradigmatic cases, in which the input
quantum data are offered by the spin expectation values and
2-point correlation functions of (i) a Bell pair, (ii) the
quantum critical point of the d ¼ 2 transverse-field Ising
model, and (iii) the low-energy states of the Heisenberg
antiferromagnet on hypercubic lattices.
Bell pair: failure of LV theories from frustration.—We

first explain the conceptual significance of our approach in
the paradigmatic case of a Bell pair ðj↑1↓2i − j↓1↑2iÞ=

ffiffiffi
2

p
of two S ¼ 1=2 spins. In the case of a (2,2,2)

scenario, choosing the measurements σ̂ð1Þ0 ¼ σ̂x, σ̂
ð1Þ
1 ¼ σ̂y;

σ̂ð2Þ0 ¼cosθσ̂x−sinθσ̂y, σ̂
ð2Þ
1 ¼ cosθσ̂xþsinθσ̂y, one obtains

the following quantum data for the correlation functions,

hσð1Þ0 σð2Þ0 iQ ¼ hσð1Þ1 σð2Þ1 iQ ¼ − cos θ, and hσð1Þ0 σð2Þ1 iQ ¼
−hσð1Þ1 σð2Þ0 iQ ¼ − sin θ. Notice that σ̂ðiÞa ’s are quantum

operators, while σðiÞa ’s are classical Ising variables repre-
senting the binary outcomes of their measurement.
Choosing the optimal angle θ ¼ π=4 leads to correlation
functions which take the common absolute value 1=

ffiffiffi
2

p
, but

realize a fully frustrated correlation loop [three
negative correlations and a positive one—see Fig. 1(d)].
When trying to reproduce this correlation pattern
with the equilibrium state of a classical Ising model

H ¼ −
P

a;b∈f0;1g Kabσ
ð1Þ
a σð2Þb , one can easily realize that

the optimal choice is to take Kab ¼ βJab with β → ∞
(restricting the phase space to the ground state manifold of
the Hamiltonian) and J00 ¼ J11 ¼ J01 ¼ −J10, defining a
fully frustrated square (3 antiferromagnetic couplings

and a ferromagnetic one), such that hσð1Þ0 σð2Þ0 iLV¼
hσð1Þ1 σð2Þ1 iLV¼hσð1Þ0 σð2Þ1 iLV¼−hσð1Þ1 σð2Þ0 iLV¼−1=4 (since
H has 8 degenerate ground states, in which there is always
one correlation function out of 4 with the wrong sign). As a
consequence, one obtains for the gradient vector
the components G00¼G11¼G01¼−G10¼ð2 ffiffiffi

2
p

−1Þ=4
defining an effective Hamiltonian K which has the same
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form as H, and which reconstructs the celebrated Clauser-

Horne-Shimony-Holt (CHSH) inequality [37] hσð1Þ0 σð2Þ0 þ
σð1Þ1 σð2Þ1 þ σð1Þ0 σð2Þ1 − σð1Þ0 σð2Þ1 iLV ≥ −Bc ¼ −2 (while the
quantum data achieve the value −2

ffiffiffi
2

p
).

Bell inequality for the quantum Ising model at its
quantum-critical point.—Moving on to many-body sys-
tems, we consider the 2d transverse-field Ising model at its
quantum-critical (QC) point. Here, the quantum data
consist of the net magnetization and pair correlation
functions, and our approach reconstructs a permutationally
invariant Bell inequality violated by the quantum data [25].
The relevant inequality, first identified in Ref. [17], is
violated by strongly squeezed states [38–40], and squeez-
ing is also a property of the QC point in question [41]. Yet
our approach allows us to make a stronger statement,
namely, that—given the ðN; 2; 2Þ scheme with measure-
ment bases suggested by Ref. [38]—a symmetric Bell
inequality is the optimal one, namely, the one which is most
strongly violated, for quantum data that are not at all
symmetric (unlike those produced in the experiments of
Refs. [38,39]), because of the spatial decay of correlations
functions at criticality.
Bell inequality for Heisenberg antiferromagnets.—We

conclude our article by focusing on the equilibrium states
of a paradigmatic quantum spin-lattice model, namely, the
quantum Heisenberg antiferromagnet (QHAF) with
Hamiltonian Ĥ ¼ J

P
hiji Ŝ

ðiÞ · ŜðjÞ, where ŜðiÞ are quantum
S ¼ 1=2 operators, and the sum runs over pairs of nearest
neighbors on a hypercubic lattice with an even number of
sites. The ground state of this model realizes a global
singlet, namely, a many-body generalization of the Bell
pair considered above. We focus on a ðN; k; 2Þ scenario,
with k ≥ 3 measurements per spin along axes na
ða ¼ 0; 1;…; k − 1Þ, and we consider a uniform measure-
ment strategy in which the axes are coplanar and form an
angle aπ=k with a given reference axis (this choice turns
out to be optimal [25])—see Fig. 2(a). Feeding our
algorithm with the two-point correlation function of the
2d QHAF with k ¼ 3 measurements as quantum data, we
discover that the latter violate the following symmetric Bell
inequality:

hBiLV¼
Xk−1

a¼0

Saaþ
Xk−2

a¼0

Sa;aþ1−Sk−1;0≥−Bc¼−2Nðk−1Þ;

ð8Þ

where Sab ¼
P

i≠jhσðiÞa σðjÞb iLV. This inequality (proven in
the Supplemental Material [25]) turns out to be a many-
body extension of the Pearle-Braunstein-Caves inequality
[42,43] proposed for nonlocality detection in two-spin
states. Similarly to the above-cited example of the QC
point of the 2d quantum Ising model, it is remarkable to
notice that quantum data with spatial structure—such as the
correlation function of the 2dQHAF—are found to most

strongly violate a Bell inequality in which the spatial
structure is washed out by the symmetrization procedure.
To see explicitly that the ground state of the QHAF

violates the inequality of Eq. (8), we make use of the SU(2)
invariance to rewrite the Bell operator B̂ in the
form [25]: B̂ ¼ 4k½1þ cosðπ=kÞ�Ĵ2z − Nk cosðπ=kÞ − Nk,

where Ĵz ¼
P

i Ŝ
ðiÞ
z is the collective spin along z.

Therefore, the classical bound −Bc is violated by the
quantum data whenever

hĴ2ziQ
N

< βk ¼
1

4
−

k − 1

2kð1þ cos πkÞ
; ð9Þ

where the largest value of the right-hand side is found for
k ¼ 4, and it reads β4 ¼ 1=ð16þ 12

ffiffiffi
2

p Þ ¼ 0.030330….
Equation (9) states that a sufficiently low value of the
variance of one collective spin component (below the β4
bound) is a witness [38] of Bell nonlocality [“witness”
because, in order to derive it, we explicitly used the spin
algebra as well as the hypothesis of SU(2) invariance of the
state]. The ground state of all Heisenberg antiferromagnets
with even N (regardless of the geometry of the underlying
lattice) are total spin singlets (such that hĴ2ziQ ¼ 0). Hence
they satisfy the above criterion and violate the Bell
inequality of Eq. (8). Moreover, in the Supplemental

(a)
(b)

FIG. 2. Many-body Bell nonlocality of quantum Heisenberg
antiferromagnets. (a) Measurement basis (k ¼ 4) providing the
strongest violation of the Bell inequality in Eq. (8) by the low-
temperature data of quantum Heisenberg antiferromagnets.
(b) Normalized fluctuations of a collective spin component
hðĴzÞ2i=N in Heisenberg antiferromagnets on the linear chain
(d ¼ 1), the square lattice (d ¼ 2) and the cubic lattice (d ¼ 3).
The data shown are obtained via the Bethe-Ansatz prediction [44]
for d ¼ 1, and by quantum Monte Carlo (d ¼ 2, 3) on lattices of
size 302 and 123, respectively—the thermodynamic limit values
are essentially reached for these sizes. When the fluctuations
become smaller than the classical bound β4 (see text) they witness
the appearance of Bell nonlocality; in the figure we report as well
the known bound for witnessing entanglement [45,46].

PHYSICAL REVIEW LETTERS 126, 140504 (2021)

140504-4



Material [25] we show that the quantum violation
of the inequality Eq. (8) offered by total spin singlets,
hB̂iQ ¼ −Nk½1þ cosðπ=kÞ�, is the maximal violation
authorized by quantum mechanics (namely, regardless of
the dimension of the Hilbert space of the system, of its
quantum state, and of the chosenmeasurements). Figure 2(b)
shows that the condition Eq. (9) is also met by thermal
equilibrium states of the QHAF in d ¼ 1, 2, and 3 up to
very sizable temperatures (the higher the larger d is, as
nonlocality is clearly protected by the strength of anti-
ferromagnetic correlations). The condition of Eq. (9) is to
be contrasted with the much looser one, hĴ2ziQ=N < 1=6
required to witness entanglement between the individual
spins [45,46]—namely, to exclude the possibility of writing

the state of the system as ρ̂ ¼ P
s ps ⊗i ρ̂

ðiÞ
s , where ρ̂ðiÞs are

arbitrary (pure or mixed) states of individual spins. This
reflects the fact that, for mixed states, Bell nonlocality is a
much stronger form of quantum correlations than entan-
glement. Moreover the fundamental connection between
the collective spin variance and the spin susceptibility at
thermal equilibrium χz ¼ hĴ2ziQ=ðkBTNÞ (where T is the
temperature) makes the above witness of nonlocality
experimentally accessible to magnetometry experiments
on quantum magnets at realistic temperatures.
Conclusions.—We have demonstrated a variational

approach which can assess whether an arbitrary set of
quantum data, coming from scalable many-body systems,
exhibits quantum nonlocality; and which reconstructs the
Bell inequality most strongly violated by the data at hand.
The computational cost of the algorithm is polynomial in
system size whenever the quantum data are not obtained
from systems governed by random Hamiltonians, and are
not obtained by using a randommeasurement basis for each
d.o.f.—and it may still remain polynomial even if the above
conditions are not met. Therefore, our approach opens the
door to scalable and systematic certification of entangle-
ment in synthetic quantum matter (quantum simulators
[47,48], quantum processors [49,50]). When the violated
Bell inequalities have a symmetric structure under the
exchange of d.o.f. (as in the case of the Heisenberg
antiferromagnets reported in this work), a witness of
Bell nonlocality can be formulated by using collective
observables only [38], and the latter is therefore accessible
in the broader context of quantum materials in condensed
matter physics.
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