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Within a natural black-box setting, we exhibit a simple optimization problem for which a quantum
variational algorithm that measures analytic gradients of the objective function with a low-depth circuit and
performs stochastic gradient descent provably converges to an optimum faster than any algorithm that only
measures the objective function itself, settling the question of whether measuring analytic gradients in such
algorithms can ever be beneficial. We also derive upper bounds on the cost of gradient-based variational
optimization near a local minimum.
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Introduction.—In recent years, an array of variational
hybrid quantum-classical algorithms have been widely
studied as leading candidates for near-term quantum com-
puters, due to their relatively modest quantum resource
requirements and potential of scalability. Variational algo-
rithms have been proposed in the context of quantum
simulation (e.g., variational quantum eigensolvers [1,2]),
combinatorial optimization (e.g., the quantum approximate
optimization algorithm [3]), and machine learning (e.g.,
quantum classifiers [4–8]).
In the variational setting, one can prepare states belong-

ing to some parametrized family fjθigθ for θ ∈ X ⊂ Rp,
where p is the number of variational parameters. The set of
parametrized states which may be prepared will depend on
the specifications of the quantum device. We consider
parametrizations consisting of p “pulses” applied to some
easy-to-prepare starting state jΨi,

jθi ≔ jθ1;…; θpi ¼ e−iApθp=2 � � � e−iA1θ1=2jΨi;

where Aj is the Hermitian operator which generates pulse j.
This form of parametrization is well motivated theoretically
[9–11] and is widely considered in the literature.
A classical “outer loop” controls the quantum device,

which is used only for preparing variational states and
making simple measurements. The classical outer loop uses
this measurement information to perform a classical
optimization of some objective function fðθÞ over the
feasible set X , where fðθÞ is induced by some Hermitian
objective observable H, via the definition fðθÞ ≔ hθjHjθi.
Given the ability to prepare variational states jθi, there

remain the questions of what observables should be
measured, and how the measurement outcomes should
be used by the classical outer loop to find an approximate
minimizer for fðθÞ. Typically, the objective observableH is
decomposed as a linear combination of observables which
each can be efficiently measured in low depth. For instance,

we may always write a Pauli decomposition H ¼ P
i αiPi,

where αi > 0 and Pi are tensor products of Pauli operators.
By linearity, it is possible to construct an estimator for
hθjHjθi via measurements of the Pauli strings fPigi.
In this work, wewill find it convenient to take a novel but

natural approach for estimating the objective function or its
derivatives via sampling terms of the Pauli decomposition
to measure according to an appropriate distribution; a
similar sampling strategy was previously employed in
the context of random compiling for Hamiltonian simu-
lation [12]. To this end, we express H as an expectation
value, H ¼ EEXPX, where E ≔

P
i αi and the random

variable X is distributed as pXðxÞ ≔ αx=E. For a given
point θ in parameter space, by linearity we have
fðθÞ ¼ hθjHjθi ¼ EEXhθjPXjθi. Hence, an unbiased
�E-valued estimator for fðθÞmay be obtained by sampling
x from the distribution pX, measuring Px with respect to
jθi, and then scaling the output by E. With estimates of f
obtained in this way, the classical outer loop performs a
stochastic zeroth-order (i.e., derivative-free) optimization
of the function fðθÞ; “stochastic’ because of the random-
ness of the measurement outcomes when estimating fðθÞ,
and “derivative-free” because the outer loop receives
estimates of fðθÞ rather than estimates of its gradient
∇fðθÞ or of higher-order derivatives.
However, it is not apparent that such a zeroth-order

strategy is best. Indeed, as observed in a number of works
(listed in the subsequent section), by performing a slightly
more complicated measurement it is possible to directly
estimate ∇fðθÞ; this estimate can then be used with a first-
order (i.e., gradient-based) optimization algorithm. To this
end, we may express the jth component of the gradient as
an expectation value, ∇jfðθÞ ¼ hθjGjjθi, where

Gj ¼
i
2
½Uðjþ1Þ∶pAjU

†
ðjþ1Þ∶p;H�
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(see Sec. II of the Supplemental Material [13]
for a derivation). Here, Uj∶k is shorthand for
e−iAkθk=2 � � � e−iAjθj=2. To measure Gj with a low-depth
circuit, we may expand Aj and H as linear combinations
of products of Pauli operators with positive coefficients,
obtaining

∇jfðθÞ ¼ ΓjEK;Lhθj
i
2
½Uðjþ1Þ∶pQ

ðjÞ
K U†

ðjþ1Þ∶p; PL�jθi;

where QðjÞ
k are Pauli operators appearing in the expansion

of Aj, Γj is the sum of coefficients appearing in the
resulting expansion, and the joint probability of
ðK ¼ k; L ¼ lÞ, denoted qKLðk; lÞ, is proportional to the
coefficient associated with the term in the expansion
including QðjÞ

k and Pl. A� 1-valued unbiased estimator
for hθjði=2Þ½Uðjþ1Þ∶pQ

ðjÞ
k U†

ðjþ1Þ∶p; Pl�jθi can be obtained
with a single measurement via a simple Hadamard-test
circuit (as described in Refs. [26–28]; see also Sec. II of the
Supplemental Material [13]). Now, we may construct a
�Γj-valued unbiased estimator for ∇jfðθÞ with a single
measurement by sampling ðk; lÞ from qKL, measuring the
corresponding observable as described above, and scaling
the output by Γj. Generalizations of this strategy permit the
measurement of higher-order derivatives as well.
Finally, an unbiased estimator ĝðθÞ for the full gradient

may be constructed with one measurement by choosing
component j with probability Γj=kΓ⃗k1, estimating ∇jfðθÞ
using the method described above, and then scaling the
output by ðkΓ⃗k1=ΓjÞêj, where êj denotes the unit vector in
direction j. Here we have defined the vector
Γ⃗ ≔ ðΓ1;…;ΓpÞ⊤. It may be verified [13] that ĝ is
�kΓ⃗k1 valued, and that Eĝ ¼ ∇f. Note that the choice
to sample j with probability proportional to Γj is optimal
for minimizing Ekĝk2 among all choices of sampling
weights (as may be verified via a Lagrange multiplier),
and furthermore results in this quantity having no explicit
dependence on p.
Our method for constructing unbiased estimators for f

and its gradient is effectively a form of importance
sampling which assigns higher weight to larger terms in
the sum; this is reflected in the fact that the magnitude of an
estimator depends on an appropriate sum of coefficients,
but carries no explicit dependence on the number of terms
in the decomposition (or on the number of variational
parameters for the gradient estimator). This is especially
relevant for applications (such as quantum chemistry) for
which many terms of the sum may have small weight.
Recently, subsequent works [29,30] have numerically
studied similar estimators and have furthermore proposed
methods of adaptively setting the sampling weights asso-
ciated with each observable in the expansion [30,31].
A fundamental question is now whether, within the

vicinity of a local optimum, “first-order” variational algo-
rithms which perform measurements to construct gradient
estimators can converge faster than algorithms which use

the simpler, “zeroth-order” strategy of estimating only the
objective function itself. This question may be especially
important in the context of quantum simulation, in which a
precise solution is often desired. Within a natural black-box
setting, we answer this question affirmatively by exhibiting
an optimization problem for which performing gradient
measurements, and using these gradient estimates in
conjunction with stochastic gradient descent (SGD) [32],
converges to an optimum asymptotically faster than any
strategy based on measuring the objective function.
The optimization problem we analyze to demonstrate

this separation is quite simple: it is essentially the problem
of learning the ground state of a 1-local (noninteracting)
spin Hamiltonian. While an analytic solution to this
problem may be readily derived, the black-box model
ensures the variational algorithm behaves in a generic way,
rather than merely solving the problem analytically (as this
would be computationally infeasible for more complicated
problems). This simple problem provides a counterexample
to the proposition that, within the natural black-box setting
defined below, the convergence rate of gradient-based
variational algorithms can be generically matched by that
of zeroth-order algorithms. In particular, this rules out the
possibility that gradient measurements can always be
replaced by gradient estimates obtained by finite-differ-
encing energy measurements without a loss of perfor-
mance. This observation may be of interest in the design of
practical algorithms for near-term quantum computers, in
which gradient measurements could be more difficult to
implement than energy measurements. Our results demon-
strate that one cannot hope to generically simulate gradient
measurements while maintaining equivalent performance;
hence, incurring extra overhead for measuring gradients
could be worthwhile.
The speed-up we obtain for gradient-based algorithms

crucially relies on using an appropriate choice of variational
Ansatz for the problem at hand, making our toy model
setting more similar to that of variational algorithms with
theoretically motivated Ansätze rather than those which use
a “hardware-efficient Ansatz” [33]. Indeed, the setting of
“barren plateaus” [34] in which the Ansatz looks random
and gradient-based optimization fails may be viewed as the
opposite situation to that studied in this work.
While our analysis of a noninteracting system is suffi-

cient to rule out the existence of zeroth-order algorithms
which generically match the performance of first-order
algorithms, we cannot rule out the possibility that certain
classes of problems contain additional structure which
allows zeroth-order algorithms to match the convergence
rate of first-order algorithms. However, we might expect the
noninteracting model to exhibit qualitatively similar behav-
ior to that of general models in a disordered phase which
flow under renormalization group transformations to non-
interacting systems. Furthermore, in the toy model settings
we study, the algorithms are constrained to remain within
the vicinity of the optimum. Hence, our zeroth-order
bounds do not apply to algorithms which may operate
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far from the vicinity of the optimum to which they are
trying to converge. Indeed, in some cases analytic gradient
measurements may be performed by performing multiple
“nonlocal” energy measurements and combining the
results [5,35,36].
Prior work.—Prior works had considered gradient mea-

surements in variational algorithms, but it remained unclear
whether they could confer an advantage. It was first
observed that gradients could be directly measured in
the context of hybrid quantum-classical algorithms in
Ref. [2], but the authors pointed out that “it is not clear
whether or not access to the derivative would improve the
optimization.” Many subsequent works [5,7,28–31,35–46]
have proposed using gradient measurements in variational
algorithms for specific applications, but lacked concrete
theoretical evidence for an advantage over zeroth-order
algorithms; our work complements these proposals by
providing such evidence. In Ref. [27], algorithms based
on gradient measurements were numerically compared
against zeroth-order algorithms for the combinatorial opti-
mization problem MaxCut. Interestingly, the authors found
no advantage for gradient-measurement-based algorithms
for this problem. The discrepancy between our results and
theirs could be explained by the possibility that their
simulations were dominated by the cost of finding good
local optima rather than converging to a specific local
optima (as is our focus in this Letter). Similar questions
about the benefit of noisy gradients for optimization had
previously been studied in the purely classical context
[47,48], but fundamental differences between the classical
and quantum variational settings prevented these results
from being directly applicable in the present setting.
Nonetheless, our strategy for proving an advantage for
gradient-based variational algorithms adapts some tech-
niques developed in these works, which in turn are inspired
by methods from statistical minimax and learning theory.
Black-box model.—We now discuss our rigorous sepa-

ration between the performance of zeroth-order and first-
order variational algorithms. As a prerequisite, we first
introduce a black-box model for variational algorithms. To
see why such a setting is useful, note that a classical
computer with unbounded computational resources is
capable of simulating any hybrid quantum-classical algo-
rithm; in this sense, no quantum measurements are
required. Of course, this simulation will generally require
exponential space and run-time, and therefore be intrac-
table. Since one of our goals is to prove lower bounds on
the number of quantum measurements required by a
variational algorithm, we must impose extra constraints
on the classical component of the algorithm to rule out such
brute-forcing behavior. A natural way to do this which is
also amenable to theoretical analysis is via a model in
which the “quantum” component of the algorithm is only
accessible via queries to a black box. Note that our
motivation for a black-box model is analogous to the

motivation for a black-box model in the context of purely
classical optimization, where it has been found to be a
highly useful and insightful framework [32].
We now describe the black-box setting. We assume the

classical outer loop is not given an explicit description of
the objective observable H, but rather has access to an
oracle OH encoding H. Suppose H ¼ EELPL as above.
The classical outer loop may query OH with a variational
state Ansatz description Θ, a parameter θ ∈ Rp, and
optionally an index j ∈ ½p�. Upon querying OH without
the optional index, which we call a zeroth-order query, the
oracle prepares the variational state jθi according to the
Ansatz described by Θ and outputs an unbiased �E-valued
estimate of fðθÞ following the sampling approach
described above. Similarly, upon querying OH with index
j, which we call a first-order query, the oracle outputs an
unbiased �Γj-valued estimate of ∇jfðθÞ following the
sampling approach. Higher-order queries to the oracle may
be defined analogously, as described explicitly in the
Supplemental Material [13]. In the black-box setting, we
say an algorithm is kth order if it only makes queries of
order k or lower.
In this oracle model, following the classical optimization

literature [32], the classical outer loop is given black-box
access to OH and may be promised that H belongs to some
family H, but is not given explicit knowledge of H. The
relevant performance metric of an optimization algorithm
in this setting is the query complexity, that is, the number of
oracle calls made by the classical algorithm. If the oracles
are implemented physically via the observable sampling
procedures described above, the query complexity exactly
corresponds to the number of quantum state preparations
and measurements performed.
To formally state our separation between zeroth- and

first-order variational algorithms, it will be necessary to
make some additional definitions. Let H be some fixed set
of objective observables, and suppose A is a (possibly
randomized) classical algorithm which has oracle access to
H ∈ H and outputs a (generally random) description of a
quantum state jψi from some distribution DH which may
depend onH. Then the optimization error ofAwith respect
to H, ErrðA;HÞ, is defined as

ErrðA;HÞ ≔ sup
H∈H

Eϕ∼DH
½hϕjHjθi − λminðHÞ�;

where λminðHÞ is the smallest eigenvalue of H, and the
expectation is over the possible randomness of the output
state jϕi. That is, ErrðA;HÞ quantifies the worst-case (over
H ∈ H) expected optimization error of A. In some cases,
we will be particularly interested in the setting in which the
variational algorithm is close to an optimum and is trying to
converge. To this end, it is helpful to define A to be a
δ-vicinity algorithm with respect toH ifA only queries the
oracle with descriptions of variational states in the δ
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optimum ofH; this is defined to be the set of states jθi such
that hθjHjθi − λminðHÞ ≤ δ for some H ∈ H.
We now introduce the parametrized family of objective

observables which we use to prove our sample complexity
separation. First, for any δ ∈ R and v ∈ f−1; 1gn, define
the n-qubit observable,

Hδ
v ≔ −

Xn
i¼1

�
sin

�
π

4
þ viδ

�
Xi þ cos

�
π

4
þ viδ

�
Zi

�
;

where Xi (Zi) denotes the Pauli X (Z) operator acting on
qubit i. Now, for a fixed parameter ϵ > 0, we define δðϵÞ ≔ffiffiffiffiffiffiffiffiffiffiffiffi
45ϵ=n

p
and

Hϵ
n ≔ fHδðϵÞ

v ∶ ∀ v ∈ f−1; 1gng:

We prove lower and upper bounds on the query cost of
finding a low-energy state with respect to observables in the
family Hϵ

n.
Lower bounds.—We now state our lower bound for

zeroth-order variational algorithms. (The numerical con-
stants are chosen for ease of proof and have not been
carefully optimized.)
Theorem 1 (Lower bound for zeroth-order methods).—

For any n > 15 and ϵ < 0.01n, let A be any zeroth-order
100ϵ-vicinity algorithm for the family Hϵ

n that makes T
queries to the oracle. Then, if ErrðA;Hϵ

nÞ ≤ ϵ, it must hold
that T ≥ Ωðn3=ϵ2Þ where the implicit factor is some fixed
constant.
The proof of Theorem 1 is information theoretic, and

may be found in Sec. IVof the Supplemental Material [13].
We choose a set M ⊂ Hϵ

n that is both large and has well-
separated points, then run A on a randomly chosen
H ∈ M. Since the points in M are sufficiently well
separated, if ErrðA;Hϵ

nÞ ≤ ϵ, we can unambiguously dis-
tinguish which H ∈ M we are given. On the other hand, if
M is large, then learning this information means that the
oracle outputs must have large mutual information with the
identity of H (via Fano’s inequality [49]; indeed our
strategy is also known as Fano’s method). Finally, in the
vicinity of the ground state the output distributions pro-
duced by zeroth-order queries to OH and OH0 for any H,

H0 ∈ M have small relative entropy, which implies an
upper bound on the amount of mutual information obtained
by each oracle query. Putting this together yields a lower
bound on the number of queries needed to optimize Hϵ

n
with error ϵ.
Theorem 1 gives a lower bound for zeroth-order varia-

tional algorithms restricted to the vicinity of the optimum.
Upon lifting these two restrictions, we obtain a more
general lower bound following a similar proof strategy.
The primary difference is that now, for this unrestricted
case, the oracle output distributions associated with two
different H, H0 ∈ M may be more distinguishable, yield-
ing a weaker lower bound.
Theorem 2 (General lower bound).—For any n > 15,

ϵ < 0.01n, and k ∈ Zþ, supposeA is a kth-order algorithm
that makes T queries and satisfies ErrðA;Hϵ

nÞ ≤ ϵ.
Then T ≥ Ωðn2=ϵÞ.
Upper bounds.—The arguments above indicate that

zeroth-order measurements taken in the vicinity of the
optimum may be less informative in some sense than more
general measurements. A priori, it is unclear if this
observation translates into an algorithmic advantage for
variational algorithms making gradient measurements. To
this end, we show that a first-order algorithm based on SGD
can attain an upper bound which matches the lower bound
of Theorem 2, even when restricted to the vicinity of an
optimum. Hence, not only does this show that a first-order
algorithm can converge faster than any zeroth-order algo-
rithm in the vicinity of the optimum, but it also shows that
for the specific problem under consideration, the first-order
SGD-based algorithm is in fact essentially optimal among
all kth-order algorithms for any k. This result is stated as the
following theorem.
Theorem 3 (Upper bound for first-order methods).—For

any ϵ < 0.01n, there exists a first-order, 100ϵ-vicinity
algorithm A based on SGD that makes Oðn2=ϵÞ queries
and achieves an error ErrðA;Hϵ

nÞ ≤ ϵ.
En route to showing this theorem, we first obtain general

upper bounds on the query cost of variational algorithms in
the vicinity of a local minimum, reported in Table I. More
precisely, the bounds are applicable when the induced
objective function f is known to be convex within some
fixed convex feasible set. They are obtained by combining

TABLE I. Rigorous upper bounds for the query complexity of optimizing fðθÞ to precision ϵ in a convex region X ⊂ Rp contained in
a 2-ball of radius R2, contained in a 1-ball of radius R1, and containing a 2-ball of radius r2, using zeroth-order strategies or gradient
measurements in conjunction with SGD or SMD with an l1 setup. Constants, logarithmic factors, and some Lipschitz constants are
hidden for clarity (see Ref. [13] for full details and caveats). For the family Hϵ

n, and with respect to the variational Ansatz used in our
proof of Theorem 3, we have p ¼ n, E ¼ ΘðnÞ, Γi ¼ Θð1Þ, R2 ¼ Θð ffiffiffi

ϵ
p Þ, R1 ¼ Θð ffiffiffiffiffi

ϵn
p Þ, r2 ¼ Oð ffiffiffiffiffiffiffiffi

ϵ=n
p Þ, λ2 ¼ Θð1Þ, and

λ1 ¼ Θð1=nÞ.

Convexity of fðθÞ Zeroth order SGD SMD

Convex min fp7.5E2=ϵ2; ½p2E4ðR2=r2Þ2=ϵ4�g R2
2kΓ⃗k21=ϵ2 R2

1kΓ⃗k22=ϵ2
λ2-strongly convex with respect to k · k2 min fp7.5E2=ϵ2; ½p2E4ðR2=r2Þ2=ϵ4�g kΓ⃗k21=λ2ϵ pkΓ⃗k22=λ2ϵ
λ1-strongly convex with respect to k · k1 minfp7.5E2=ϵ2; ½p2E4ðR2=r2Þ2=ϵ4�g kΓ⃗k21=λ1ϵ kΓ⃗k22=λ1ϵ
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objective function or gradient estimators with known
convergence results [32] from the theory of stochastic
optimization. In particular, the SGD bounds utilize the
estimator ĝðθÞ defined previously [note that ĝðθÞ can be
constructed from a single first-order oracle query]. While
Theorem 3 will only require a SGD bound, we also report
bounds based on stochastic mirror descent (SMD), as well
as (for comparison) zeroth-order algorithms. The zeroth-
order bounds, based on Refs. [50,51], are the best rigorous
bounds we are aware of, but would likely be outperformed
in practice. SMD [32] is a non-Euclidean generalization of
SGD; the SMD bounds we report are based on taking the
norm in parameter space to be the 1-norm rather than the
Euclidean 2-norm, as is the case for SGD. Further back-
ground on these algorithms, motivation for considering
SMD, and full derivation of the bounds in Table I may be
found in Sec. III of the Supplemental Material [13].
We now describe an algorithm A attaining the upper

bound in Theorem 3. We refer the reader to Sec. IV of the
Supplemental Material [13] for full technical details of the
argument. Start by fixing the following n-parameter varia-
tional Ansatz Θ:

jθ1;…; θni ≔ exp

�
−i

Xn
j¼1

ðθj þ π=4ÞYj=2

�
j0i⊗n:

This parametrization has a simple geometric interpreta-
tion: jθi is the product state on n qubits for which the
polarization of qubit j is sinðπ=4þ θjÞx̂þ cosðπ=4þ θjÞẑ.
Now, consider some objective observable Hδ

v ∈ Hϵ
n.

The induced objective function fðθÞ is found to be
fðθÞ ¼ hθjHδ

vjθi ¼ −
P

n
i¼1 cosðθi − δviÞ. Let B∞ðδÞ ⊂

Rn denote the ∞-ball of radius δ centered at the origin.
That is, B∞ðδÞ ¼ fθ∶maxðθ1; θ2;…; θnÞ ≤ δg. Note that
the ground state of Hδ

v is the state jδv1; δv2;…; δvni, and
hence corresponds to a parameter inside the set B∞ðδÞ for
any choice of v. Furthermore, the set of states associated
with B∞ðδÞ is contained in the 100ϵ optimum of Hϵ

n, and
the induced objective function fðθÞ is 0.01-strongly convex
with respect to the 2-norm (strong convexity is reviewed in
the Supplemental Material [13]). It is also straightforward
to show that, for this problem, kΓ⃗k1 ¼ OðnÞ. Theorem 3
now follows from the SGD upper bound for strongly
convex functions in Table I, taking B∞ðδÞ as the feasible
set. We note that SMD with a 1-norm setup achieves an
identical performance for this toy problem, up to loga-
rithmic factors.
Conclusion.—Our results provide theoretical evidence

that taking analytic gradient measurements in variational
algorithms can be advantageous, supporting recent gra-
dient-based proposals. We expect the rigorous upper
bounds we report in Table I may be helpful in guiding
expectations on the performance of gradient-based varia-
tional algorithms for particular classes of problems, even if

more heuristic algorithms may be used in practice. To this
end, an interesting direction for future work is to under-
stand how the parameters appearing in Table I behave for
various problems of practical interest. Further discussion,
open questions, and comparison with the literature may be
found in Sec. V of the Supplemental Material [13].
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