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Nanoparticles in solution acquire charge through the dissociation or association of surface groups. Thus,
a proper description of their electrostatic interactions requires the use of charge-regulating boundary
conditions rather than the commonly employed constant-charge approximation. We implement a hybrid
Monte Carlo/molecular dynamics scheme that dynamically adjusts the charges of individual surface groups
of objects while evolving their trajectories. Charge regulation effects are shown to qualitatively change self-
assembled structures due to global charge redistribution, stabilizing asymmetric constructs. We delineate
under which conditions the conventional constant-charge approximation may be employed and clarify the
interplay between charge regulation and dielectric polarization.

DOI: 10.1103/PhysRevLett.126.138003

Most solvated materials and biomolecules acquire non-
zero charge due to the dissociation or association of
charged surface groups. For example, proteins, DNA,
and silica nanoparticles attain their charge via proton
dissociation [1,2]. The magnitude of the surface charge
is determined by the solution conditions, such as pH, but
also by the presence of other charged entities in the vicinity,
via charge regulation (CR). Although this phenomenon
has been theoretically studied since the seminal work by
Kirkwood in the 1950s [3], the assumption that all objects
carry a constant charge is still widely employed. This is
especially striking since the surface charge distribution
plays a key role in colloidal assembly and macromolecular
structure formation, both in materials science [4] and in
biomolecular systems, such as protein binding and con-
densation [1,5,6]. The situation is exacerbated by the fact
that little is known about the many-body effects of CR on
electrostatic aggregation.
Traditionally, the Poisson equation is solved using the

constant-charge (CC) or the constant-potential (CP)
boundary conditions. The CR boundary condition yields
a solution that falls between these two limiting cases [7,8].
Charge regulation effects have been shown to change
polyelectrolyte [9] and polymer brush [10,11] phase
behavior and to enhance protein-protein interactions
[1,6]. Poisson-Boltzmann theory has elucidated the strong
dependence of surface charge on pH, but it is limited to the
weak coupling regime and to static and simple geometries
such as flat surfaces [2], a spherical particle [12], or a pair
of particles [13,14].
Particle-based simulations avoid the approximations

inherent to a mean-field approach. However, whereas
molecular dynamics (MD) and Monte Carlo (MC) simu-
lations of solvated systems with explicit charges are

standard, acid-base dissociation is rarely taken into account.
Notable exceptions include hybrid techniques for atomistic
simulations in a constant-pH ensemble [15–17] and MC
investigations of polyelectrolytes [18,19] or planar surfaces
[20,21]. Computational cost has limited these studies to
relatively small systems, so that many-body effects of CR
have not been investigated, and its consequences for the self-
assembly of charged objects are largely unknown.
Charge regulation is particularly relevant for aggregation

owing to the relation between the charge distribution and
the structure of the aggregate, which requires a self-
consistent solution of the problem. Here, we assess the
effects of CR by investigating a fully dynamic system of up
to 100 objects with more than 30 000 explicit, dissociable
sites. By implementing an efficient and parallelizable
hybrid MD-MC scheme, we examine how aggregation
and self-assembly are affected by CR. In addition, we
combine our scheme with the Iterative Dielectric Solver
(IDS) [22,23], a boundary-element method, to explore how
dielectric polarization, another intrinsically many-body
problem [24], affects CR.
We consider spherical particles with a fixed density of

surface-attached dissociable groups. Each group, e.g., a
weak acid, can be neutral or charged with a unit charge q0.
The probability αi that a group i is charged depends on the
equilibrium constant pKi and the chemical potential of the
dissociated ion μ, but also on the local electrostatic
potential ψðriÞ at the position ri of the group [7,8,18],

αi
1 − αi

¼ 10−pKie−βμ�βψðriÞq0 ; ð1Þ

where β≡ 1=ðkBTÞ is the inverse temperature and the �
applies to negatively (acid) and positively (base) charged
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groups. Note that ΔpKi ¼ pKi þ βμ log10ðeÞ is indepen-
dent of the choice of units. For acid dissociation in an
aqueous solution, μ ¼ −pHkBT lnð10Þ. Equation (1)
applies to every dissociable group in the system, so that
the full set fαig determines the surface charge density
σðrÞ ¼∓ P

i αiq0δðri − rÞ. Thereby, these equations pro-
vide a self-consistent boundary condition for the Poisson
equation, ∇ · ½εðrÞ∇ψðrÞ� ¼ −σðrÞ, with εðrÞ being the
local permittivity.
We apply this scheme to objects immersed in a mono-

valent electrolyte, represented via the primitive model, with
chemical potential pI [25]. Our hybrid MD-MC method
works as follows: The system configuration evolves via
conventional MD using the velocity-Verlet algorithm, with
parameters and potentials described in the Supplemental
Material [26]. After every nMD time steps, nMC MC steps
are performed, where each step samples the charging state
of a dissociable group, Eq. (1), or inserts/deletes salt ions.
To obtain realistic dynamics, the relative frequency of the
MD and MC steps should match the proper ratio between
the particle diffusion and the dissociation rate. Here,
however, we focus only on thermodynamic properties
and equilibrium structures, so that the choice of nMD
and nMC is guided by efficiency considerations. As both
types of steps have the same computational complexity, an
efficient convergence to equilibrium is obtained by setting
nMD ¼ nMC ¼ 1=δt, with δt being the MD time step.
Unlike the reaction ensemble method or the constant-pH

ensemble method, which are restricted to a specific range of
pH values and salt concentrations [18], this scheme con-
sistently implements both salt ion insertion and solvent
dissociation via pKs and is thus valid for any salt concen-
tration or pH. In addition, within the primitive model we
treat the dissociated charges and the monovalent salt ions as
equivalent, which increases the performance of our MC
scheme compared to existing implementations [28],
cf. Supplemental Material.
We begin by exploring the influence of CR on a spherical

particle covered with nss ¼ 792 surface sites (Fig. 1, inset).
To highlight effects of CR on the electrostatic interactions,
we initially disregard polarization effects as well as London
dispersion forces and evaluate the average charge hqLi on
this particle. Evidently, this charge depends on the dis-
sociation constant and the solution conditions; in the
Supplemental Material we examine pH dependence and
provide a comparison to Debye-Hückel theory. Here,
however, we are interested in a more subtle effect: How
does the charge, and thereby the interactions, depend on the
presence of other charged entities? We add a small particle
with constant charge equal in magnitude to the charge on
the isolated large particle, qs ¼ −hqLid→∞, and apply the
metadynamics method [29] to calculate the potential of
mean force (PMF) between the two particles, normalized
by the magnitude of the Coulomb energy at contact
λ ¼ q2s=½4πεðRþ rÞ� under CC conditions (Fig. 1).

Charge regulation results in a nearly twofold increase in
the interaction strength at contact compared to the CC
approximation. This arises due to the redistribution of
charges on the sphere—an effect similar to the polarization
of conducting objects—and due to the change in the total
charge qL on the large particle, which depends on the
proximity of the point charge qs. In the absence of CR
effects, an equivalent conductive sphere would yield an
increase in the interaction strength by a factor of 1.6 [24].
At higher ionic strengths, the electrostatic interactions are
screened and weakened. Crucially, however, in the pres-
ence of CR, the interaction at contact remains about twice
as strong as the corresponding interaction under CC
conditions, even at physiological salt concentration con-
ditions (see Supplementary Material).
A central challenge in the rational design of materials is

the prediction of structure. Our findings for a particle pair
indicate that CR may significantly affect aggregation.
Moreover, dielectric polarization has been shown to induce
large-scale changes to self-assembled structures through
local redistribution of charge within particles [24,30]. Since
charge regulation allows global redistribution of charge, we
may expect it to be an even more powerful factor. Thus, we
turn to many-body effects and self-assembly of multiple
particles. Binary mixtures of size-asymmetric particles give
rise to a plethora of self-assembled structures [31,32]. We
focus on a prototypical system of spherical particles with
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FIG. 1. Effect of charge regulation on pairwise interactions.
Top: potential of mean force V between a large particle with
radius R and a small particle (red sphere) with constant charge qs
and radius r, normalized by the coupling strength λ (Ṽ ¼ V=λ).
Charge regulation is realized through dissociable sites that can be
either neutral or charged (white and blue, respectively, in the
inset) and results in a significantly enhanced attraction (blue line)
compared to a constant charge qL ¼ −qs on the large particle
(black line). Bottom: corresponding (normalized) total charge on
the larger particle, q̃L ¼ qL=qs (dashed blue line). The parameters
employed here correspond to a 6-nm silica particle in deionized
water at pH ¼ 7 [14]: nss ¼ 792 (σss ≈ 8 nm−2), ΔpK ¼ −0.5,
qs ¼ 12q0, R ¼ 4lB, 2r ¼ lB, pI ¼ 6.7, λ ¼ 32kBT.
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size ratio 1∶7, motivated by the observation that CR
appreciably changes the pair interaction when a small
particle is positioned at approximately R=7 from the
surface, or at a center-to-center distance d ≈ 8R=7 (Fig. 1).
To understand how CR can modulate the local arrange-

ments of building blocks in a binary mixture, we start with
a small system of three large and three small particles, at
concentration ρ ¼ 0.0002R−3 and coupling strength
λ ¼ 64kBT. We focus on charge-neutral systems to clearly
decouple CR from other possible effects, such as the
formation of extended structures due to nonzero net charge
of the aggregate. In the conventional (CC) case, the
particles form a compact, symmetric aggregate [Fig. 2(a)].
However, when the charge is no longer kept fixed and
identical on each large particle, the CR simulation shows an
extended conformation [Fig. 2(b)]. Interestingly, this is
accompanied by symmetry breaking: The average net
charge of the three large particles in Fig. 2(b) is q̄L ¼
f9.8q0; 22.3q0; 16.0q0g for the top, middle, and bottom
particles, respectively, indicating that CR stabilizes asym-
metric, heterogeneously charged structures through a
global redistribution of charge.
A similar symmetry-breaking transition has recently

been reported for CR of membrane stacks [33]. A set of
four large and four small particles shows the same trend,
forming a symmetric (squarelike) structure under CC
conditions [Fig. 2(c)], but an asymmetric structure under
CR [Fig. 2(d)]. This charge redistribution due to CR

persists for larger systems and gives rise to much
more extended structures than found in CC self-assembly.
As noted, the CR-induced enhancement of pairwise inter-
actions continues to hold at higher ionic strength. The
same is true for the asymmetry imparted by CR (see
Supplemental Material).
We illustrate this in a system of 100 large and 100 small

particles at a concentration ρ ¼ 0.0043R−3 (lateral system
size L ¼ 28.5R). The structures are characterized by the
local coordination number z, which measures the number
of small particles within a distance dn ¼ Rþ 3r (the first
minimum of the radial distribution function) from each
large particle. Under CR conditions, one-dimensional
stringlike structures appear [hzi ¼ 2.04, Fig. 2(f)],
compared to folded two-dimensional hexagonal packed
monolayers with hzi ¼ 2.80 that form in the simulations
employing CC conditions [Fig. 2(e)].
Arguably, open structures similar to Fig. 2(f) have been

observed for conducting particles in a low-permittivity
medium [30]. However, we emphasize that the underlying
mechanism is different. In the case of dielectric mismatch,
the total charge on each individual particle is conserved,
and the polarization charge is redistributed across the
surface of the particle; the conductivity of the particles
then merely guarantees a constant potential on each sur-
face. This differs from the CR process, where the CP limit
would be realized by globally grounding all particles to a
common potential, allowing free redistribution of charge
among different objects and the solution. Such a system
has, to our knowledge, not been investigated.
Of particular interest, then, is the question of the

combined effects of CR and dielectric polarization. Like
CR, polarization leads to charge redistribution and accom-
panying strong many-body effects [24]. Moreover, the
prerequisite condition, namely a strong permittivity con-
trast between particles and the surrounding medium, occurs
in numerous aqueous systems, including suspensions of
silica or polystyrene colloids and protein solutions. To
answer whether CR or polarization dominates, we augment
our particle model with an additional boundary-element
layer of 1472 patches uniformly distributed on each sphere,
positioned just below the CR layer in the inset of Fig. 3.
Dielectric polarization charges are controlled by the mis-
match ε̃, which denotes the ratio of the dielectric constants
of the particle and the surrounding solvent. After each MC
and MD step, we employ the IDS to compute the induced
charge on each surface element. Conversely, these polari-
zation charges are taken into account when computing the
dissociation probability of each surface group. We evaluate
the role of dielectric effects by reexamining the system of
Fig. 1 for two extreme cases: A small particle of fixed
charge interacting with a large particle of either high
permittivity (i.e., nearly conducting; ε̃ ¼ 100) or low
permittivity (ε̃ ¼ 0.01). As is well known [30], for CC
boundary conditions, the attraction between the large and

CC

CR

(c) (e)

(d) (f)

(a)

(b)

FIG. 2. Self-assembly of binary aggregates. Small particles
(red) carry a constant charge qs ¼ 16q0, while large particles
either have a constant charge qL ¼ −qs [CC, blue spheres in
panels (a), (c), and (e)] or are charge regulating [CR, spheres with
neutral (white) or charged (blue) surface sites in panels (b), (d),
and (f)]. In the CR case, ΔpK ¼ −1.5, which results in neutral
structures, hqLi ≈ −qs. Whereas CC conditions give rise to
compact structures, CR leads to anisotropic and open assemblies.
This observation persists with increasing particle number:
Np ¼ 3, 4, and 100 large and small particles in panels (a) and
(b), (c) and (d), and (e) and (f), respectively, at ion concentration
pI ¼ 5.7. The CR images are instantaneous realizations; the
charge distribution on the large particles is continuously
fluctuating.
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the small particle is suppressed in the low-permittivity case
and enhanced in the high-permittivity case (Fig. 3).
Remarkably, however, CR almost completely screens
any dielectric polarization charges, yielding a PMF that
is nearly independent of ε̃ (cf. overlapping curves in Fig. 3).
This observation is consistent with Kirkwood’s explanation
of the dielectric increment of protein solutions [3]. Charge
regulation screens dielectric polarization; therefore, in the
far field proteins can behave as high-dielectric objects even
though the protein core has a dielectric constant signifi-
cantly lower than water.
In view of the potentially far-reaching consequences of

CR, it is an important question under which circumstances
its effects can be ignored. Figure 3 illustrates that for a
small particle with relatively high density of surface sites
(a 6-nm silica particle in water), CR strongly affects the
interactions. Conversely, we can estimate when the CC or
CP approximation results in an error in the electrostatic
interaction that is smaller than the thermal energy kBT.
We place a point charge q at a distance d from a
charge-regulating surface with a mean surface charge
density σ and a maximum (fully ionized) charge density
σ0. In a mean-field approximation, αi ¼ σ=σ0, and
the surface capacitance, determining the linear response
of the surface charge, then follows from Eq. (1) as
C ¼ ∂σ=∂ψ ¼ σð1 − σ=σ0Þð−βq0Þ. In the absence of
ionic screening, the change in the potential at the surface
due to charge q is Δψ ¼ q=ð4πεdÞ. The charge produced
by the surface capacitance will be contained within

an area of size ∼d2, since d is the relevant length
scale. The additional charge density due to CR is thus
σCR ∼ −qC̃=½d2ð1þ C̃Þ� [34], with the dimensionless
capacitance C̃≡ −CdlB=ðq20βÞ. We observe that the CC
approximation is valid if the CR charge is sufficiently
small, −σCRqd ≪ q20=lB or C̃ ≪ 1=ðq̃2 − 1Þ, where we
define the reduced charge q̃≡ q=q0

ffiffiffiffiffiffiffiffiffiffi
lB=d

p
. Conversely,

the CP limit implies an image charge qim ∼ −q, because for
a single flat surface the global CP limit is equal to the local
CP condition and can therefore be captured by a single
image charge. The CP limit is justified when ðσCRd2 −
qimÞq=d ≪ q20=lB or C̃ ≫ q̃2 − 1. The CP condition
screens any possible dielectric polarization charges, and
thus dielectric effects can be neglected. These two con-
ditions can be parametrized by just two dimensionless
variables, C̃ and q̃, allowing us to delineate the different
regimes in Fig. 4.
This schematic also allows us to estimate the importance

of CR for different particle sizes. Notably, the PMF in
Fig. 3 was obtained for a particle of only a few Bjerrum
lengths in diameter (R ¼ 4lB), corresponding to C̃ ∼ 0.1
and q̃2 ∼ 200. This condition indeed falls inside the
CR region in Fig. 4. Note that the difference between
high/low dielectric spheres in Fig. 3 is very small, but still
larger than kBT. Rescaling the (linear) system size d → γd
while keeping the Coulomb energy constant implies
q → γ1=2q, and therefore, σ → γ−3=2σ. This rescaling keeps
q̃ constant, but the surface capacitance C̃ ∼ −σdlB=q0
changes as C̃ → γ−1=2C̃ [35]. Thus, the CC approximation
becomes increasingly more accurate as the particle size
increases, which helps explain why the CC approximation
works rather well for predicting experimentally observed
crystal structures and clusters of micron-sized colloidal
particles [31,32]. On the other hand, nanoscale particles
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FIG. 3. Dielectric effects on the (normalized) potential of mean
force Ṽ for the particle pair described in Fig. 1, with the
additional condition that the large particle is polarizable. Under
constant-charge (CC) conditions, a particle with low dielectric
constant (ε̃ ¼ 0.01) has a diminished attraction (open circles) and
a high-dielectric particle (ε̃ ¼ 100) has an enhanced attraction
(asterisks). Both cases are superseded by the attraction strength
under charge-regulating (CR) conditions. Here, the high-permit-
tivity case still is slightly stronger, but the effect is barely visible
on the scale of the graph. The inset illustrates the CR-BEM
model. The BEM layer of polarizable surface patches (ε̃ ¼ 100)
is placed at a distance R=8 below the CR layer, with positive (red)
or negative (blue) induced dielectric charges. The CR layer is
shown as small white (neutral) or charged (blue) spheres.
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proposed in the main text—is required. In addition, in the two
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will generally exhibit very strong CR effects; e.g., our
results [Fig. 2(b)] provide a possible explanation for the
chain formation observed in nanoparticle assembly [36,37].
In summary, we have implemented a hybrid MD-MC

technique for resolving CR effects in arbitrary dynamical
systems. Utilizing this method, we have shown that
CR-induced many-body effects can qualitatively alter the
predicted self-assembled structures via the stabilization of
asymmetrically charged aggregates. Both our numerical
results and a scaling analysis demonstrate that CR is
particularly important for charged objects that are a few
Bjerrum lengths in size, such as proteins or nanoparticles,
in which case CR screens dielectric polarization effects.
Our method, as well as the general findings, is broadly
applicable to macromolecular and colloidal systems [38].
Although we focused on acid/base dissociation, the

method outlined in this Letter can be directly utilized to
study the association or dissociation of arbitrary ionic
groups. For example, the MC part of our approach,
Eq. (1), is equivalent to existing adsorption models for
studying calcium binding to proteins [41].
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