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The number of compact structures of a single condensed polymer (SCP), with similar free energies,
grows exponentially with the degree of polymerization. In analogy with structural glasses (SGs), we expect
that at low temperatures chain relaxation should occur by activated transitions between the compact
metastable states. By evolving the states of the SCP, linearly coupled to a reference state, we show that,
below a dynamical transition temperature (Td), the SCP is trapped in a metastable state leading to slow
dynamics. At a lower temperature, TK ≠ 0, the configurational entropy vanishes, resulting in a
thermodynamic random first order ideal glass transition. The relaxation time obeys the Vogel-Fulcher-
Tamman law, diverging at T ¼ T0 ≈ TK . These findings, accord well with the random first order transition
theory, establishing that SCP and SG exhibit similar universal characteristics.
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Experiments suggest that glasslike behavior should be
expected in chromosome dynamics [1–3], collapse kinetics
of polymers [4], and intrinsically disordered proteins [5].
Dynamics [6–8], and phase behavior [9–11] of single
polymers exhibit glassy behavior upon cooling or com-
pression [12–14]. However, it is unknown whether the glass
transition in a single polymer is governed by the same
physical principles that describe their macroscopic
counterparts.
Single condensed polymer (SCP) should exhibit glasslike

behavior because their phase space structure satisfies all the
requirements for observing slow dynamics. At temperature
(T) below the coil-to-globule temperature Tθ the number of
compact structures or states, with similar free energies,
scales exponentially with N [15]. At low T transition
between compact structures can only occur by activated
transitions. Because the physical picture for a SCP is the
same as in the structural glass transition (SGT), the dynamics
of the SCP should be described by theories developed for
bulk glassy systems. We anticipate that the SCP dynamics,
over a wide range of temperatures, can be understood within
the framework of the random first order transition (RFOT)
theory. That this is so is the main conclusion of this work.
Let us describe the salient aspects of the energy land-

scape of the SCP and liquids that undergo the SGT. The
SGT dynamics is well described by the RFOT theory [16],
based on spin glass models [17–19]. An ingredient in the
RFOT theory for the SGT is the emergence of an expo-
nentially large number of metastable states [20] below the
dynamic transition temperature, Td [17,18]. The free
energy barrier ΔF‡ between the metastable states is related
to the configurational entropy, Sconf as ΔF‡ ∼ S−1conf [16].

Since Sconf decreases as T decreases, ΔF‡ increases,
resulting in a significant increase in the structural relaxation
time. RFOT theory predicts that Sconf vanishes at an ideal
glass transition temperature, TK < Td, at which a thermo-
dynamic random first-order transition, without latent heat,
occurs from a supercooled liquid to an ideal glass.
To affirm the predictions of the RFOT theory in the SCP,

we use the Franz-Parisi (FP) method [21,22], which
involves coupling two copies of the system through a field
with strength ϵ. FP showed [23–27] that an order parameter,
measuring the structural similarity between the states,
exhibited first order transition at nonzero ϵ only when a
large number of metastable states emerge.
We used a bead-spring model [28] for a polymer with

N ¼ 128 weakly attractive Lennard-Jones (LJ) particles
linearly connected by a harmonic potential (Sec. I of the
Supplemental Material [29]). Parameters of the potentials
are chosen to suppress crystallization (Sec. II of Ref. [29]).
The model in which solvent effects are implicitly taken into
account by varying the strength of the interaction between
the monomers captures the universal dynamic and static
properties of polymeric systems [37]. We adopted this well-
tested approach to investigate universal aspect of glass
formation in a single condensed polymer. Surprisingly,
minimal models quantitatively reproduce the scattering
profiles of disordered proteins [38]. These observations
justify the polymer model used here.
Following FP (Fig. 1), we created two replicas of the

SCP at the same T. Replica 1 in Fig. 1 is a fixed reference
conformation (fr⃗0g), chosen from an equilibrium
ensemble, and serves as a quenched random field. The
conformation of fr⃗g in replica 2 (Fig. 1) is evolved using
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Monte Carlo simulation by coupling it to replica 1 (Fig. 1).
The energy Eϵðfr⃗gjfr⃗0gÞ of the coupled replicas is

Eϵðfr⃗gjfr⃗0gÞ ¼ Eðfr⃗gÞ − NϵQ̂statðfr⃗g; fr⃗0gÞ; ð1Þ

where Eðfr⃗gÞ is the potential energy of the SCP in replica
2, ϵ is the strength of the external field, and Q̂statðfr⃗g; fr⃗0gÞ
measures the static structural similarity between fr⃗g
and fr⃗0g.
We used contact maps, two-dimensional representations

of a given structure of the SCP, to calculate Q̂stat. Two
noncovalently linked monomers are in contact if the
distance between them is less than Rc ¼ 1.4σ, the first
minimum in the radial distribution function (Sec. II in the
Supplemental Material [29]). Panels next to the snapshots
in Fig. 1 are examples of the contact maps.
The static overlap function Q̂stat is calculated using

Q̂statðfr⃗g; fr⃗0gÞ ¼
P

ði;jÞ0qijðfr⃗gÞqijðfr⃗0gÞ
P

ði;jÞ0qijðfr⃗0gÞ
; ð2Þ

where qijðfr⃗gÞ is the contact function. It is unity if i and j
monomers are in contact and zero otherwise, and ði; jÞ0 is
the sum over all nonbonded pairs of monomers. The
average of the static order parameter hQ̂stati was obtained
by taking a Boltzmann-weighted average over r⃗ and r⃗0;
we first performed a thermal average of Q̂stat with fr⃗0g
fixed, and then a disorder average over various fr⃗0g
was calculated to account for the fluctuations caused by
differences in fr⃗0g (details are in Sec. I of the Supplemental
Material [29] and the relation to the random field Ising
model is given in Sec. V). If fr⃗g and fr⃗0g are identical,
Q̂statðfr⃗g; fr⃗gÞ ¼ 1, resulting in hQ̂stati ¼ 1. If the replicas
are totally uncorrelated, hQ̂stati is the average contact
probability hqiji, which is ≃0.13 for the parameters used
in the simulations. From Eqs (1) and (2), it follows thatQstat
varies as a function of ϵ. When the external field strength ϵ

is sufficiently large, fr⃗g is biased to fr⃗0g, such that
hQ̂stati ≃ 1. If ϵ decreases to 0, fr⃗g is independent of
fr⃗0g, resulting in hQ̂stati ≃ hqiji.
The changes in hQ̂stati with ϵ ≠ 0 should have the

characteristics of first order transition only if metastable
states are probed. Since all the metastable states are
generated at the same thermodynamic condition (the same
T and N), they are equivalent. The individual free energy of
metastable α is Fα. The canonical free energy Ftot is less
than the component averaged free energy,

P
α PαFα, where

Pα is the probability of being in the state α [16,39,40]. The
difference between the two is TSconf , the entropic gain
arising from an exploration of all possible states,
Ftot ¼ Fα − TSconf . Thus, if ϵ is strong enough to com-
pensate for the entropic penalty, the SCP in replica 2 would
be trapped in a single metastable state, such that
hQ̂stati ¼ Qglass ≃ 1. Otherwise, it could explore all pos-
sible metastable states over time, resulting in hQ̂stati
equalling Qliquid ¼ hqiji. Thus, at the critical value of ϵ ¼
ϵc where NϵcðQglass −QliquidÞ ≃ TSconf , hQ̂stati should
change discontinuously between Qglass and Qliquid, which
would be a signature of a first order transition. By showing
Q̂stat exhibits the first-order-like transition at ϵ ≠ 0, we can
confirm the existence of metastable states in the SCP.
In the upper panel of Fig. 2(a), hQ̂stati is plotted

as a function of ϵ for various T (the open symbols).
As expected, hQ̂stati decreases from ≃1 to hqiji ≃ 0.13
as ϵ decreases to 0. The static susceptibility, χstatðϵÞ ¼
NðhQ̂2

stati − hQ̂stati2Þ, has a peak at the value of ϵ where
hQ̂stati changes drastically [the dashed vertical lines in
Fig. 2(a)]. The width of the peaks decreases and the
amplitudes increase as T decreases, reflecting a sharp change
in hQ̂stati at T. Such sharp changes in hQ̂stati and χstatðϵÞ
provide evidence for the first-order-like phase transition in
the presence of the coupling field. We establish in Sec. III
of the Supplemental Material [29] that the first order nature
of the transition is more pronounced as N increases.

FIG. 1. Implementation of the Franz-Parisi method. The equilibrium conformation in replica 1 is one of the exponentially large
number of metastable sates, which is coupled to replica 2. The panels next to the snapshot are the contact maps in the metastable states.
The overlap between replicas 1 and 2 measures the static structural similarity (blue and red, for example).
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Next, we confirm that the abrupt change in hQ̂stati
reflects a regular first order transition. In the first order
transition, the minimum in the free energy FQ as a function
of Q̂stat changes discontinuously at the phase transition
point. The free energy, FQ, is calculated from the distri-
bution PðQstatjfr⃗0gÞ ¼ hδðQstat − Q̂statðfr⃗g; fr⃗0gÞÞiT , i.e.,
−NFQ=kBT ¼ hlnPðQstatjfr⃗0gÞiD [41], where h� � �iT and
h� � �iD are the thermal and disorder averages of the
property, respectively (see the definitions of PðQstatjfr⃗0gÞ,
h� � �iT , and h� � �iD in Sec. I of the Supplemental Material
[29]). In Fig. 2(b), FQ at T ¼ 0.35 is plotted as a function
of Qstat for various ϵ. When ϵ ¼ 1, FQ has minimum at
Qstat ≃ 0.93, indicating that fr⃗g is pinned around
the state associated with fr⃗0g. As ϵ decreases to 0, the
minimum shifts to Qstat ¼ 0.13. At ϵ ¼ 0.574, where χstat
has a maximum, FQ has two minima at Qstat ≈ 0.34 and
Qstat ≈ 0.84. The two different states coexist at ϵ ¼ 0.574,
which leads to a discontinuous change in the order
parameter. In Fig. 2(a), we plotted the minimum position
of FQ as a function of ϵ for various T (the solid lines). The
minimum position changes discontinuously at ϵ where the
fluctuation in Q̂stat is maximized, revealing the first order
nature of the transition.
We arrive at the same conclusion from the Ehrenfest

classification, according to which dFϵ=dϵ should be
discontinuous at the transition point. Here, Fϵ is the free
energy as a function of ϵ, which is calculated from FQ
using the Legendre transformation, Fϵ ¼ FQ − ϵhQ̂stati,
where ϵ is equal to ϵ ¼ ∂FQ=∂Qstat [42]. Figure 2(d),

displaying Fϵ as a function of ϵ at various T, shows a
discontinuous change in the slopes (¼ dFϵ=dϵ) between
−0.13 and −0.93 (the dashed and dashed-dotted lines,
respectively), a signature of the first order transition. Since
hQ̂stati ¼ −dFϵ=dϵ, we define the effective order param-
eters in the two states as Qliquid ¼ 0.13 and Qglass ¼ 0.93.
Thus, the discontinuous change in the slope in Fig. 2(d)
corresponds to the discontinuous change in hQ̂stati between
Qliquid and Qglass. Figures 2(b) and 2(d) confirm that the
first order transition in Q̂stat occurs with a change in ϵ, thus
verifying the existence of the metastable states in the SCP.
RFOT theory predicts that the metastable states, sepa-

rated by barriers, should cease to exist above the dynamical
transition temperature Td, which implies that the first-order
transition nature of Q̂stat should disappear at T > Td.
We found that hQ̂stati changes continuously with ϵ when
T ≥ 1.8 (see Sec. IV of the Supplemental Material [29]).
The coil-to-globule temperature is Tθ ¼ 2.3 > Td (Sec. II
in Ref. [29]). Thus, the equilibrium collapse occurs before
the dynamical transition, implying that the dynamics of the
SCP in the temperature Td ≤ T ≤ Tθ can be described by
the standard polymer theory. Only below Td the dynamics
is determined by activated transitions between equivalent
compact structures.
The phase behavior in Fig. 2(a) is summarized in

Fig. 2(c). The phase boundaries ðϵc; TcÞ are associated
with the peak in χstat at a given T (the open symbols in the
graph). At T < Td (the open symbols), hQ̂stati changes
discontinuously, and when T > Td (the filled triangles), it

(a) (b) (c)

(d) (e)

FIG. 2. Phase behavior of Q̂stat. (a) Average hQ̂stati (the upper panel) and susceptibility χstatðϵÞ (the lower panel) of the order
parameters with respect to ϵ for various T. The vertical dashed lines are the positions of ϵ where χstatðϵÞ has the maximum value. The
solid lines represent the position of Qstat, where FQ in (b) has the minimum value. (b) FQ for various ϵ at T ¼ 0.35. FQ in the graph is
shifted by its minimum value. (c) T − ϵ phase diagram of Q̂stat. The open and filled symbols represent T of ϵc for T < Td and T ≥ Td,
respectively. The solid line is a linear fit for T < Td. The black dashed line denotes the position of Tθ. The open green star denotes T0.
The inset is the same phase diagram at 0 ≤ ϵ ≤ 0.9. (d) Fϵ as a function of ϵ for various T. Fϵ is shifted by Fϵ¼0. The slopes of the dashed
and dashed-dotted lines are −0.13 and −0.93, respectively. (e) TSconf=N as a function of T. The solid lines are linear fits. The yellow and
green open symbols represent the T0 and y intercept of the solid line in (c), respectively. In the inset, we magnify the graph near the x
intercepts of the linear fits.
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changes continuously. Above Tθ (the black dashed line), ϵc
is less dependent on T. Because Tc changes linearly
with ϵc (when T < Td), we extrapolate the phase boundary
to ϵ ¼ 0 (the blue solid line). The y intercept in the linear fit
is Tc at ϵ ¼ 0, which has a positive value at ϵ ¼ 0
[Tcðϵ ¼ 0Þ ¼ 0.14]. This signals that a thermodynamic
transition would occur at the nonzero temperature when
ϵ ¼ 0, implying that the free energy of individual meta-
stable states Fα is equal to the total free energy Ftot at a
finite temperature even without external fields, which is
only possible if Sconf ¼ 0 at Tcðϵ ¼ 0Þ.
We investigated if Sconf vanishes at Tcðϵ ¼ 0Þ. Using

two methods [26,41], Sconf at ϵ ¼ 0 is estimated as a
function of T. Since the first order transition occurs when
the entropic gain (TSconf) is compensated by the energetic
contribution of the fields [NϵcðQglass −Qliquid)], we esti-
mated the configurational entropy using (method 1) [26],
TSconf=N ¼ ϵc½Qglass −Qliquid�. A more natural way is to
calculate TSconf as the difference between Fα and Ftot,
corresponding to FQglass

and FQliquid
at ϵ ¼ 0, respectively.

Thus, Sconf can also be calculated using (method 2),

TSconf=N ¼ FQglass
ðϵ ¼ 0Þ − FQliquid

ðϵ ¼ 0Þ: ð3Þ

Figure 2(e) shows TSconf=N (the open symbols) as a
function of T using methods 1 and 2. Linear extrapolation
of TSconf=N (the linear lines) shows that Sconf vanishes at a
similar nonzero value of T, regardless of the method used.
It should be emphasized that the numerical value of the
temperature is consistent with Tcðϵ ¼ 0Þ (the open yellow
star). This confirms that it is because the configurational
entropy vanishes that the thermodynamic transition occurs
at Tcðϵ ¼ 0Þ.
What is the nature of the thermodynamic transition at

Tcðϵ ¼ 0Þ? It corresponds to an ideal glass transition of the
SCP. Most importantly, we note from Eq. (3), TSconf is the
energy difference between the two states, which accounts
for the latent heat at the transition. Therefore, Fig. 2(e)
shows that as T approaches Tcðϵ ¼ 0Þ, the latent heat
decreases and vanishes at Tcðϵ ¼ 0Þ. This implies that at
Tcðϵ ¼ 0Þ, the SCP exhibits a random first order transition
from liquid to an ideal glass without releasing latent heat
but with a discontinuity in Q̂stat. Hence, Figs. 2(c) and 2(e)
show that the ideal glass transition in the SCP at
TK ¼ Tcðϵ ¼ 0Þ ≠ 0 is truly the analog of TK in bulk
glasses.
There ought to be consistency between thermodynamic

random first order transition and dynamics [43]. To inves-
tigate the dynamics of the SCP, we performed dynamic MC
simulations (details in the Supplemental Material [29]). The
time-dependent overlap function QdynðtÞ is

QdynðtÞ ¼
P

ði;jÞ0qijðtÞqijð0Þ
P

ði;jÞ0qijð0Þ
; ð4Þ

where qijðtÞ is the contact function of a single polymer at
time t; QdynðtÞ quantifies how rapidly the contact map
loses memory of the initial pattern. By definition
Qdynðt ¼ 0Þ ¼ 1. As t → ∞, the SCP loses memory of
the structural correlation, and thus the pattern of the contact
map also becomes independent of the initial state.
Consequently, QdynðtÞ decays to hqiji.
Figure 3(a) shows the time average of QdynðtÞ

(hQdynðtÞit) as a function of t at different T. As T
decreases from 1.1 to 0.35, hQdynðtÞit decays more slowly
with the decay time constant increasing by a few
orders of magnitude. Figure 3(b) shows that heights and
timescales of the peak in the dynamic susceptibility,
χdynðtÞ ¼ N½hQdynðtÞ2it − hQdynðtÞi2t �, increase as T
decreases, implying that the structural relaxation becomes
heterogeneous as T decreases [44–46]. Figures 3(a) and
3(b) reveal that the sluggish structural relaxation in the SCP
is accompanied by enhanced dynamic heterogeneity, an
important dynamic property of glassy liquids [47,48].
The structural relaxation time τα [Fig. 3(c)], calculated

using hQdynðt ¼ ταÞit ¼ 0.3, increases by more than 2
orders of magnitude when T decreases from 1.1 to 0.35
(the open symbols). The dramatic increase in τα in the SCP,
metallic [49], colloidal systems [50], and molecular glasses
[51], is described well by the Vogel-Fulcher-Tamman
(VFT) equation, τα ¼ τ0 exp½ðD0T0Þ=ðT − T0Þ�, where
τ0, D0, and T0 are fitting parameters. We fit τα as a
function of T to the VFT equation [the dashed line in
Fig. 3(c)], yielding T0 ¼ 0.1, [the green open symbols in
Figs. 2(c) and 2(e)]. The value of T0 is close to TK .
The divergence of τα is associated with a decrease in

Sconf (ln τα ∼ 1=TSconf [16]). Figure 3(d), showing ln τα as a

(a) (b)

(c) (d)

FIG. 3. Glassy dynamics in the SCP. (a) Time average of time
dependent overlap function hQdynðtÞit and (b) susceptibility
χdynðtÞ for various T. (c) Dependence of τα on T (the open
symbols). The dashed line is the VFT fit. (d) Relation between τα
and Sconf .

PHYSICAL REVIEW LETTERS 126, 137801 (2021)

137801-4



function of ½TSconf=N�−1, obtained using methods 1 and 2,
shows that the increase in τα is closely related to the
decrease in sconf . Thus, the dynamics and statics of the SCP
are consistent with RFOT predictions.
Our findings show that the RFOT theory holds for a

diverse systems exhibiting changes from diffusive motion
to activated transitions as a control parameter is changed.
The requirement is the emergence of multiple metastable
states, separated by free energy barriers, below a character-
istic dynamical transition temperature. This feature is
shared by the SCP and myriad glass forming systems,
thus explaining the validity of the RFOT theory for
condensed polymers.
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[42] M. Mézard and G. Parisi, Glasses and Replicas (John Wiley

& Sons, New York, 2012), Chap. 4, pp. 151–191.
[43] T. R. Kirkpatrick and D. Thirumalai, J. Phys. A 22, L149

(1989).
[44] T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. A 37, 4439

(1988).
[45] E. Flenner, M. Zhang, and G. Szamel, Phys. Rev. E 83,

051501 (2011).
[46] E. Flenner and G. Szamel, Phys. Rev. Lett. 105, 217801

(2010).
[47] M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
[48] G. Biroli and J. P. Garrahan, J. Chem. Phys. 138, 12A301

(2013).
[49] R. Busch, W. Liu, and W. L. Johnson, J. Appl. Phys. 83,

4134 (1998).
[50] H.W. Cho, M. L. Mugnai, T. R. Kirkpatrick, and D.

Thirumalai, Phys. Rev. E 101, 032605 (2020).
[51] C. A. Angell, Science 267, 1924 (1995).

PHYSICAL REVIEW LETTERS 126, 137801 (2021)

137801-5

https://doi.org/10.1038/ncomms9044
https://doi.org/10.1126/science.aaw9498
https://doi.org/10.1103/PhysRevLett.115.198102
https://doi.org/10.1103/PhysRevLett.115.198102
https://doi.org/10.1103/PhysRevLett.119.087801
https://doi.org/10.1103/PhysRevLett.119.087801
https://doi.org/10.1103/PhysRevLett.125.058001
https://doi.org/10.1126/science.8171336
https://doi.org/10.1126/science.8171336
https://doi.org/10.1039/c1sm05298e
https://doi.org/10.1103/PhysRevLett.114.178102
https://doi.org/10.1103/PhysRevLett.76.3029
https://doi.org/10.1002/polb.20908
https://doi.org/10.1002/polb.20908
https://doi.org/10.1063/1.3227751
https://doi.org/10.1063/1.3227751
https://doi.org/10.1103/PhysRevE.65.030801
https://doi.org/10.1126/science.1238950
https://doi.org/10.1021/acs.macromol.6b01461
https://doi.org/10.1051/jphyslet:01985004608035300
https://doi.org/10.1051/jphyslet:01985004608035300
https://doi.org/10.1103/PhysRevA.40.1045
https://doi.org/10.1103/PhysRevA.40.1045
https://doi.org/10.1103/PhysRevLett.58.2091
https://doi.org/10.1103/PhysRevLett.58.2091
https://doi.org/10.1103/PhysRevB.36.5388
https://doi.org/10.1103/PhysRevB.36.5388
https://doi.org/10.1103/PhysRevB.36.8552
https://doi.org/10.1103/PhysRevB.36.8552
https://doi.org/10.1063/1.1672587
https://doi.org/10.1103/PhysRevLett.79.2486
https://doi.org/10.1088/1742-5468/2013/11/P11012
https://doi.org/10.1103/PhysRevE.88.022313
https://doi.org/10.1103/PhysRevE.89.022309
https://doi.org/10.1103/PhysRevLett.114.205701
https://doi.org/10.1103/PhysRevLett.114.205701
https://doi.org/10.1073/pnas.1407934111
https://doi.org/10.1073/pnas.1407934111
https://doi.org/10.1073/pnas.1706860114
https://doi.org/10.1073/pnas.1706860114
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.137801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.137801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.137801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.137801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.137801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.137801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.137801
https://doi.org/10.1103/PhysRevE.57.843
https://doi.org/10.1103/PhysRevE.57.843
https://doi.org/10.1063/1.2209684
https://doi.org/10.1063/1.2209684
https://doi.org/10.1126/science.1120714
https://doi.org/10.1126/science.1120714
https://doi.org/10.1063/1.2721554
https://doi.org/10.1063/1.2721554
https://doi.org/10.1063/1.2721555
https://doi.org/10.1063/1.2721555
https://doi.org/10.1103/PhysRevLett.56.416
https://doi.org/10.1021/acs.jpcb.9b02575
https://doi.org/10.1080/00018738200101438
https://doi.org/10.1103/RevModPhys.87.183
https://doi.org/10.1103/RevModPhys.87.183
https://doi.org/10.1063/1.5091961
https://doi.org/10.1063/1.5091961
https://doi.org/10.1088/0305-4470/22/5/003
https://doi.org/10.1088/0305-4470/22/5/003
https://doi.org/10.1103/PhysRevA.37.4439
https://doi.org/10.1103/PhysRevA.37.4439
https://doi.org/10.1103/PhysRevE.83.051501
https://doi.org/10.1103/PhysRevE.83.051501
https://doi.org/10.1103/PhysRevLett.105.217801
https://doi.org/10.1103/PhysRevLett.105.217801
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1063/1.4795539
https://doi.org/10.1063/1.4795539
https://doi.org/10.1063/1.367167
https://doi.org/10.1063/1.367167
https://doi.org/10.1103/PhysRevE.101.032605
https://doi.org/10.1126/science.267.5206.1924

