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Instantons, spacetime-localized quantum field tunneling events, are ubiquitous in correlated condensed
matter and high-energy systems. However, their direct observation through collisions with conventional
particles has not been considered possible. We show how recent advances in circuit quantum
electrodynamics, specifically, the realization of galvanic coupling of a transmon qubit to a high-impedance
transmission line, allows the observation of inelastic collisions of single microwave photons with
instantons (phase slips). We develop a formalism for calculating the photon-instanton cross section,
which should be useful in other quantum field theoretical contexts. In particular, we show that the inelastic
scattering probability can significantly exceed the effect of conventional Josephson quartic anharmonicity
and reach order-unity values.
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Introduction.—Instantons are time-localized solutions to
a system’s imaginary time equations of motion, describing
quantum tunneling events. They typically bridge between
symmetry-related configurations and carry nontrivial topo-
logical indexes [1]. Instantons play important roles in many
areas of physics, ranging from single-particle quantum-
mechanical tunneling [1], through transport in low-
dimensional superconductors and superfluids (where they
are also known as “phase slips” and can be thought of as
vortices crossing the system) [2–9], to determining the
phase diagram [10] and breaking of classical conservation
laws [11,12] in gauge theories. Most of these studies
concern thermodynamic or transport properties. A more
direct way to probe such short-lived excitations would be
through resonances they may induce in the scattering cross
sections or decay rates of other more stable particles with
which they interact. However, such questions received
much less attention, in large part due to lack of relevant
experiments.
Advances in the fabrication and control of super-

conducting circuits allow monitoring of the dynamics of
single microwave photons. For example, recent experi-
ments have exposed unusual relaxation dynamics in a
uniform Josephson junction array, in which phase slips
play an important role [13]. However, their interpretation is
complicated due to the presence of disorder and offset
charge fluctuations [14–16]. It has recently been realized
theoretically [17–27] that controllable quantum simulation
of many-body physics may be easier to achieve in
“quantum impurity” setups, leading to initial experiments
[28–32]. We thus study a single flux-tunable small
Josephson junction in the regime where the Josephson
energy still dominates (transmon qubit [33]), galvanically
coupled to an array of large junctions. The array acts as a

transmission line allowing microwave photons to control-
lably scatter off the small junction [30]. The large
Josephson inductance makes the line wave impedance of
the order of the resistance quantum; hence the array screens
the effects of unwanted offset charges on the transmon
without completely suppressing phase slips there. From a
broader perspective, the large impedance amounts to an
effective fine-structure constant of order unity [34], usher-
ing in unprecedentedly strong correlations. We will show
that a single photon propagating along the array may excite
a phase slip at the transmon and inelastically convert into
lower-frequency photons with a high probability, signifi-
cantly larger than the conversion probability due to the
usual Josephson quartic nonlinearity [35]; this effect could
be measured via the resulting broadening of the array
modes [13]. For this we develop an extension of the
standard equilibrium instanton calculation [1] to a scatter-
ing scenario, which could be useful in other fields. We will
now outline its main ingredients, deferring some technical
details to the Supplemental Material [36].
Model.—We concentrate on the setup realized in recent

experiments [30,37], corresponding to the electric circuit
depicted in Fig. 1(a). It consists of a long (length N ≫ 1)
two-leg array of superconducting islands connected by
strong Josephson junctions Eline

J with large junction capaci-
tance Cline, negligible ground capacitance (not depicted),
and intermediate interleg capacitance Cg. The large Cline

suppresses phase slips along the arrays, allowing their
treatment as classical transmission lines. Except for this, the
Cline could be ignored below the array plasma frequency.
The small ground capacitance pushes the leg-even modes to
high frequencies, decoupling them from the transmon.
We may thus employ a simplified single-leg array model
[Fig. 1(b)] for the leg-odd degrees of freedom. The array
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capacitance to the ground Cg and inductance L in
Fig. 1(b) are the interleg capacitance and twice the intraleg
Josephson inductance in Fig. 1(a), leading to a Lagrangian

L ¼ C0
_ϕ2
0

2
þ EJ cos ð2ϕ0Þ þ

XN
n¼1

Cg
_ϕ2
n

2
−
ðϕn − ϕn−1Þ2

2L
;

ð1Þ

where ϕn is in units of flux and we employ units where
e ¼ 1 and ℏ ¼ 1; hence the flux quantum is
Φ0 ¼ h=2e ¼ π. The array spacing a will serve as the
unit of length.
The array is terminated by a transmon qubit [33] (node

n ¼ 0, blue elements in Fig. 1), a small superconducting
quantum interference device whose Josephson energy EJ is
flux tunable and much larger than its charging energy,
EC ¼ 1=2C0. Hence, to leading order we may approximate
its Josephson cosine by a quadratic function [30]. Then
Eq. (1) gives rise to eigenmodes with dispersion ωk ¼
2v sinðk=2Þ ≈ vk, where v ¼ 1=

ffiffiffiffiffiffiffiffiffi
LCg

p
, the array wave

velocity divided by the array spacing, is much larger than
all other energy scales, i.e., for all relevant modes k ≪ π.
The eigenmodes are ∝ sinðknþ δkÞ, where (Supplemental
Material [36], Sec. SI.B)

δk ¼ tan−1
�

Γ0ωk

ω2
0 − ω2

k

�
ð2Þ

is the phase shift. Here ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
is the transmon LC

frequency and Γ0 ¼ 1=ZC0 ¼ 4EC=πz is its elastic broad-
ening due to its coupling to the array, where Z ¼ ffiffiffiffiffiffiffiffiffiffiffi

L=Cg

p
is the array wave impedance and z ¼ Z=RQ
[RQ ¼ h=ð2eÞ2 ¼ π=2 is the superconducting resistance
quantum]. For N ≫ 1, the mode spacing is Δ ¼ πv=N,
hence

P
k →

R∞
0 dω=Δ.

Upon increasing EC=EJ, the transmon nonlinearity starts
becoming significant. We will concentrate on the regime
where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=EJ

p
is still small, and furthermore, Γ0=ω0 ≪ 1

(i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=EJ

p
≪ z), so the transmon resonance is well

defined [30]. In this regime, the nonlinearity manifests in
two ways: (i) Expanding the Josephson cosine gives rise to
quartic nonlinearity, shifting ω0 by −EC. It could also

induce photon inelastic scattering, but we will show later on
that for realistic device parameters this effect could be
subleading. (ii) The periodicity of the cosine allows for
instantons (phase slips). An incoming photon may excite a
phase slip, and the resulting voltage and current pulse
may give rise to the emission of photons with different
frequencies. We will now study in detail the latter inelastic
effect.
Instanton calculation.—For a disconnected transmon

[first two terms of Eq. (1)] the classical instanton solution
in imaginary time, describing a phase slip between
ϕ0ðτ → −∞Þ ¼ 0 and ϕ0ðτ → ∞Þ ¼ �Φ0 ¼ �π, is

ϕð0Þ
0 ðτÞ ¼ �2 tan−1ðeω0τÞ, or, in Fourier space, ϕð0Þ

0 ðωÞ ¼
�π=iω cosh ðπω=2ω0Þ [1]. Here and below, the upper
(lower) sign corresponds to an instanton (anti-instanton).
The classical action S0 of the instanton, together with the
contributions of Gaussian fluctuations around it, give rise to
the transmon ground state charge dispersion λ0 (half the
width of the lowest Bloch band of the corresponding
Mathieu equation [33,38]) in the WKB approximation
([36], Sec. SI.A)

λ0 ≈
8ffiffiffi
π

p ð8E3
JECÞ1=4e−

ffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
: ð3Þ

We now incorporate the array to lowest order in
Γ0=ω0. Expanding the imaginary time action around the

classical isolated instanton solution [ϕð0Þ
0 ðτÞ as given above

and ϕð0Þ
n>0ðτÞ ¼ 0] to second order in the deviation

δϕn ¼
P

k δϕk sinðknþ δkÞ, one finds ([36], Sec. SI.B)

S ¼ S0 þ
Z

dω
2π

�jϕð0Þ
0 ðωÞj2
2L

þ
X
k

Ck

2
ðω2 þ ω2

kÞjδϕkðωÞj2

−
sinðkþ δkÞ − sinðδkÞ

L
ϕð0Þ
0 ð−ωÞδϕkðωÞ

�

−
Z

dτ
8EJ

cosh2ðω0τÞ
�X

k

sinðδkÞδϕkðτÞ
�
2

; ð4Þ

where the capacitance of mode k is Ck ≈ NCg=2 forN ≫ 1.
The very last term contributes to higher orders in Γ0=ω0 and
will be neglected henceforth. The classical equations of
motion for δϕk result in

δϕkðωÞ ≈
1

Ckðω2 þ ω2
kÞ
ωk cos δk

Z
ϕð0Þ
0 ðωÞ; ð5Þ

to leading order in k ≪ 1. Plugging this back into the action
[39] gives ([36], Sec. SI.B)

δS ¼ 1

2

X
k

f̃2k; f̃k ¼
ffiffiffiffiffiffiffiffi
2Δ
zωk

s
1

cosh ðπ
2
ωk
ω0
Þ ; ð6Þ

(a) (b)

FIG. 1. The studied system: (a) the full circuit, (b) a simplified
version. See the text for details.
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leading to a renormalization λ0 → λ0e
−
P

k
f̃2k=2. For z > 1

instantons are relevant, resulting in an emergent
scale λ� ∼ λ0ðλ0=ω0Þ1=ðz−1Þ, below which instanton effects
are nonperturbative [2]; we limit ourselves to higher
energies.
Within the approximations we employ, the contribution

of a single instanton to a multipoint correlation of the ϕk is

given by the corresponding classical solution [39], multi-

plied by λ0e
−
P

k
f̃2k=2=2. By the Lehmann-Symanzik-

Zimmermann reduction formula [40,41], this correlation
with its external single-particle legs amputated gives the T -
matrix element between Nin incoming photons with
momenta k01; k

0
2;…; k0Nin

and Nout outgoing photons with
momenta k1; k2;…; kNout

([36], Sec. SI.C),

T
k0
1
;k0

2
;…;k0Nin

k1;k2;…;kNout
¼ Δ

2π
lim

fω0
j
→iωk0

j
g

fωj→−iωkj g

YNin

j¼1

Ck0j
ðω02

j þ ω2
k0j
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ck0j
ωk0j

q YNout

j¼1

Ckjðω2
j þ ω2

kj
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ckjωkj

p
�YNin

j¼1

ϕk0j
ðω0

jÞ
YNout

j¼1

ϕkjðωjÞ
�

1-instanton

¼ ð∓ 1ÞNinð�1ÞNoutfk0
1
fk0

2
� � � fk0Nin

fk1fk2 � � � fkNout

λ0
2
e−
P

k
f̃2k=2; ð7Þ

with

fk¼
ffiffiffiffiffiffiffiffi
2Δ
zωk

s
ω2
0−ω2

k

sinðπ
2
ω0−ωk
ω0

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

0−ω2
kÞ2þðΓ0ωkÞ2

q ð8Þ

being the “form factor” of the instanton in the photon
modes basis. Note that it is finite at the resonance
frequency ω0, but still peaked there. It rises toward low
frequencies (assumed higher than λ�); this reflects the fact
that an instanton involves a shift of phases along the entire
array and hence couples well to low-k modes. Thus,
processes in which a nearly resonant photon scatters into
one nearly resonant photon and several low-energy
photons (whose number is controlled by z) will play an
important role. Note also that fk diverges at higher
odd multiples of ω0, which are nonlinear resonances

broadened only at higher order in Γ0. In relevant experi-
ments [30], these will anyway be close to EJ, i.e., outside
the instanton regime; hence we will limit ourselves here to
lower frequencies. Adding up the contribution of the
instantons and the anti-instantons eliminates processes
involving an odd number of photons.
Let us consider processes in which an additional photon

with the specific frequency ωk is included among either the
incoming or outgoing photons. Combining the square of
the T -matrix elements just obtained with the appropriate
Bose-Einstein factors, corresponding to spontaneous and
stimulated emission as well as stimulated absorption, gives
the total rate Γin

k of the inelastic decay (minus creation) of a
single incoming photon at k ([36], Sec. SI.D) (the inelastic
scattering probability per collision is 2πΓin

k =Δ, while
ωk=Γin

k is the experimentally measurable quality factor of
mode k [30]) [42],

Γin
k ¼ λ20

2
f2ke

−
P

k0 f̃
2

k0−2
P

k0f
2

k0nBðωk0 Þ
X

Nout;Nin

X
k1<���<kNout ;

k0
1
<���<k0

Nin

f2k1 � � � f2kNout
f2k0

1
� � � f2k0Nin

½1þ nBðωk1Þ� � � � ½1þ nBðωkNout
Þ�

× nBðωk0
1
Þ � � � nBðωk0Nin

Þ2π½δðωk þ ωk0
1
þ � � � þ ωk0Nin

− ωk1 − � � � − ωkNout
Þ − fωk → −ωkg�; ð9Þ

The probability of a process not involving photons with frequency ωk0 decreases when such photons are present, due to the

increased probability of their emission or absorption. This is accounted for by the factor e−2
P

k0 f
2

k0nBðωk0 Þ (Supplemental
Material [36], Sec. SI.D).
Upon expressing the delta functions via their Fourier representations, the summations over Nin;out and the ks can be

recognized as the Taylor series of an exponent. All in all, we find that Γin
k ¼ 2f2kImΠRðωkÞ, where

ΠRðωÞ ¼ −λ20

Z
∞

0

dt sinðωtÞ exp
�
−
X
k0
ðf2k0f½1þ nBðωk0 Þ�ð1 − e−iωk0 tÞ þ nBðωk0 Þð1 − eiωk0 tÞg þ f̃2k0 − f2k0 Þ

�
ð10Þ

is the photon retarded self-energy, whose imaginary part gives the total inelastic conversion (absorption minus emission)
rate of energy ω into any photon combination. Using it, one may write down more refined rates; for example, the net rate of
creation of photons at k0 due to processes involving an incoming photon at k is
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Γin
k0jk ¼ 2f2kf

2
k0(ImΠRðωk − ωk0 Þf½1þ nBðωk0 Þ�½1þ nBðωk − ωk0 Þ� − nBðωk0 ÞnBðωk − ωk0 Þg

þImΠRðωk þ ωk0 Þf½1þ nBðωk0 Þ�nBðωk þ ωk0 Þ − nBðωk0 Þ½1þ nBðωk þ ωk0 Þ�g); ð11Þ

which accounts for processes in which photons at k,
k0 are, respectively, absorbed-emitted, emitted-absorbed,
emitted-emitted, or absorbed-absorbed, with appropriate
signs to obey an energy conservation sum rule,
ωkΓin

k ¼ P
k0 ωk0Γin

k0jk. The last couple of equations are
the central results of this Letter. To recap, they apply for
any ωk;ωk0 between λ� and 3ω0, provided that λ� ≪
maxðΓ0; TÞ ≪ ω0 and EC ≪ EJ. The single-instanton
approximation further requires 2πΓin

k =Δ≲ 1.
Inelastic rate behavior.—We exemplify the parameter

dependence of the inelastic rate in Fig. 2. To better
understand its behavior, it is useful to study some limits
([36], Sec. SI.E). First, at T ¼ 0 and low frequencies
ω ≪ ω0 one may approximate fq ≈ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ=zωq

p
in

Eq. (10), leading to [43]

ΠRðωÞ ≈
π

Γð2=zÞ
λ20
ω

�
ω

ωcðzÞ
�

2=z
; ð12Þ

where ΓðxÞ is the gamma function [38], and the effective
cutoff ωcðzÞ ≈ 0.9ω0 is z independent for z≳ 1.
Let us now turn to the scattering of nearly resonant

photons, ωk ≈ ω0, starting with T ¼ 0. As the spectrum of
inelastically emitted photons in Fig. 2(b) exemplifies, for
z≳ 1 and Γ0=ω0 → 0 the dominant process involves one
emitted photon at ωk0 ≈ ωk, while the other photons carry
low energy of order Γ0, hence

2πΓin
k0jk

Δ2
≈

2λ21
Γð2=zÞωc

�
ωk −ωk0

ωc

�2−z
z Y
q¼k;k0

Γ0

2

ðω0 −ωqÞ2 þ ðΓ0

2
Þ2 ;

ð13Þ

where λ1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27EJ=EC

p
λ0 is the charge dispersion of the

first excited level of an isolated transmon [33]. Summing
over k0 one obtains on resonance (mode k0 ¼ ω0=v)

FIG. 2. Parameter dependence of the inelastic scattering probability of a single incoming photon with frequency ωk by a single phase
slip, Eqs. (10) and (11). (a) On-resonance (mode k0 ¼ ω0=v) total probability 2πΓin

k0
=Δ as function of ω0=Γ0 for several values of z at

T ¼ 0 [using the full Mathieu expression for λ0 [33,38], rather than the approximate Eq. (3) (Supplemental Material [36], Sec. SI.A)].
(b) The distribution of inelastically generated photons Γin

k0 jk=Γ
in
k at ωk ¼ ω0, ω0 � Γ0 for z ¼ 2, and Γ0=ω0 ¼ 0.2. (c),(d) T ¼ 0

resonance line shape at (c) z ¼ 2 and different Γ0=ω0 or (d) Γ0=ω0 ¼ 0.2 and different z. A simple Lorentzian with width Γ0 is also
plotted for comparison. (e) Temperature dependence of the on-resonance probability for Γ0=ω0 ¼ 0.05 and different z. (f) Ratio between
the T ¼ 0 on-resonance probabilities due to the instantons and due to the quartic nonlinearity, Eq. (16), showing that the former may
dominate by several orders of magnitude for not-too-small Γ0=ω0 and z ≳ 1.
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2πΓin
k0

Δ
≈

πðω0=ωcÞ2=z
Γð2=zÞ sinðπ=zÞ

λ21
ðΓ0=2Þ2

�
Γ0=2
ω0

�
2=z

: ð14Þ

The charge dispersion λ0 decreases fast with ω0, masking
the corresponding increase in the number of possible decay
channels contributing on resonance [Fig. 2(a)]; this serves
to distinguish this process from parasitic effects, such as
dielectric loss, which display the opposite behavior [13].
We further see that the inelastic scattering probability
can approach order unity in the recently achieved regime
of effective fine-structure constant z≳ 1 [13,30].
The increase in number of channels with frequency is seen
in an asymmetry of the inelastic resonance line shape
[Figs. 2(c) and 2(d)]. For jωk − ω0j ≪ ω0 one has

Γin
k

Γin
k0

≈

8>>>>><
>>>>>:

2 sin
	
π
z


	
Γ0=2
ωk−ω0



3−2=z

; ωk − ω0 ≫ Γ0;

ðΓ0=2Þ2
ðω0−ωkÞ2þðΓ0=2Þ2 ; jωk − ω0j≲ Γ0;

1−2=z
cosðπ=zÞ

	
Γ0=2
ω0−ωk



4−2=z

; ω0 − ωk ≫ Γ0:

ð15Þ

Finally, let us note that temperature suppresses coherent
quantum phase slips (particularly for z > 1, when they are
relevant [2]), but gives rise to scattering by thermal
photons, and hence could either decrease or increase the
decay rate, depending on z, as shown in Fig. 2(e). Similar
expressions to Eqs. (13)–(15) can be obtained via an
effective Hamiltonian tailored to describe this particular
class of processes [44], though that approach cannot give
the value of ωc.
Quartic nonlinearity.—Let us now briefly discuss

inelastic photon scattering by more mundane nonlinear-
ities, coming from the Taylor expansion of the transmon
Josephson cosine. To leading order in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=EJ

p
it is

dominated by the Fermi golden rule contribution of the
quartic term in the expansion, which at T ¼ 0 allows an
incoming photon at k to split into three at ki, i ¼ 1, 2, 3.
Expressing ϕ0 in terms of the array modes, one finds ([36],
Sec. SIII)

Γin
k ¼ 4z2

3π

ω4
0Δ4

Γ2
0

sin2ðδkÞ
ωk

X
ki

sin2ðδk1Þ
ωk1

×
sin2ðδk2Þ

ωk2

sin2ðδk3Þ
ωk3

δðωk − ωk1 − ωk2 − ωk3Þ: ð16Þ

As opposed to the instanton contribution, where f2k
increases toward low energies [Eq. (8)], here the factors
sin2ðδkiÞ=ωki ∝ ωki [cf. Eq. (2)] suppress the contribution
of low-frequency photons and severely limit the phase
space for splitting of nearly resonant photons. Summing
over ki we find the resulting total inelastic rate near
resonance to scale as ∼z2ΔΓ4

0=ω
4
0. The suppression with

Γ0=ω0 can make it significantly smaller than the instanton

contribution, provided λ1 is not too small [cf. Eq. (14)]. The
ratio between the corresponding rates is depicted in
Fig. 2(f), which shows that instanton processes are stronger
by several orders of magnitude in the experimentally
accessible regime of not-too-small Γ0=ω0 and z≳ 1 [where
the exponential factor in Eq. (3) does not dominate] [30].
Conclusions.—In this Letter, we have developed a

general formalism for the study of instanton-particle
collisions, and applied it to a recently realized [30] super-
conducting circuit in which a transmon qubit is strongly
coupled to a high-impedance transmission line. We have
shown that significant inelastic single-photon scattering by
instantons can be controllably initiated and identified in
such a setup: As opposed to the Josephson quartic non-
linearity, which only affects near-resonance photons and
thus cannot split them into low-frequency ones, an instan-
ton shifts the phases along the entire array, and hence
couples well to low-k modes and allows a near-resonant
incoming photon to dissipate energy into them. An experi-
ment has now appeared [37] demonstrating this effect, with
favorable comparison to a simplified version of our theory
([36], Sec. SII). This paves the way toward the study of
similar effects, not only in various superconducting circuits
[2,3,5–9,17–29,31,32], but also in other condensed
matter (e.g., atomtronic setups) [4,45,46] and particle
physics [10–12] systems.
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