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We uncover topological features of neutral particle-hole pair excitations of correlated quantum
anomalous Hall (QAH) insulators whose approximately flat conduction and valence bands have equal
and opposite nonzero Chern number. Using an exactly solvable model we show that the underlying band
topology affects both the center-of-mass and relative motion of particle-hole bound states. This leads to the
formation of topological exciton bands whose features are robust to nonuniformity of both the dispersion
and the Berry curvature. We apply these ideas to recently reported broken-symmetry spontaneous QAH
insulators in substrate aligned magic-angle twisted bilayer graphene.
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Introduction.—The structure of the ground states of
condensed matter systems intricately affects their low-
temperature properties, and is imprinted in the spectrum
of low-energy quasiparticles and long-wavelength collective
excitations. Electrical insulators generically break no con-
tinuous symmetries and hence lack gapless collective
modes, and are gapped to charge transport in their bulk.
However, interactions can stabilize neutral excitons, bound
states of a hole in the valence band, and an electron in the
conduction band. While also gapped, excitons typically
have lower energy than charged excitations and dominate
the optical response of direct-gap semiconductors, where
they can be excited at zero wave vector. More generally,
excitons form at a fixed “center ofmass” (CM)wavevector q
set by the momentum separation between the valence band
maximum and conduction band minimum. The spectrum
and transport properties of excitons can also be modified by
the topology of the electronic bands near these extrema
[1,2]. This is captured by the excitonic Berry curvature [3]
linked to the evolution of the two-particle bound state across
its Brillouin zone (BZ). Such considerations are relevant, for
example, to two-dimensional transition-metal dichalcoge-
nides [4], where the valley-contrasting anomalous velocity
of excitons has been experimentally observed [5].
Here, we focus on excitons in correlated insulators

formed in moiré heterostructures of twisted bilayer gra-
phene (TBG) aligned with hexagonal boron nitride (h-BN).
In the “magic-angle” regime, absent interactions, the
relevant band structure has a gapped Dirac dispersion with
four degenerate bands below and above charge neutrality
[6,7]. Members of each degenerate quartet are labeled by
spin (σ ¼ ↑;↓) and valley (τ ¼ �) indices. The valleys
correspond to the �K points of the single-layer BZ, have
Chern numbers C ¼ τ, and are interchanged by time-
reversal symmetry (TRS). At integer filling, the suppressed
bandwidth (≲10 meV) allows interactions to stabilize

TRS-breaking valley- and spin-polarized states in which
a partial subset of the bands is fully occupied—a mecha-
nism proposed to explain the observed quantized anoma-
lous Hall (QAH) response in h-BN TBG [8].
We identify several striking features of the exciton

spectrum in h-BN TBG linked to the flatness and nontrivial
Chern number of the underlying single-particle bands
coupled with the spontaneous breaking of time-reversal
and spin rotation symmetries. We root our understanding of
universal topological features in an analytically tractable
model that mimics the features of the h-BN TBG band
structure by leveraging the mapping between jCj ¼ 1
Chern bands and Landau levels (LLs). Our four-band
model has perfectly flat dispersion and uniform Berry
curvature, and consists of spinful electron LLs whose
Chern number has a sign set by a twofold degenerate
valley index. We examine excitations of a fully spin-and-
valley-polarized state with one filled LL. We show that the
intravalley spin-wave mode has the gapless quadratic
dispersion expected for Goldstone modes of a conserved
order parameter, consistent with closely related quantum
Hall ferromagnets [9,10]. In striking contrast, we show that
the intervalley excitonic bands of our model are gapped and
exactly flat. The flatness of the bands admits low-energy
q ¼ 0 excitons throughout the BZ, and also leads us to
consider the dynamics of the excitonic CM which is
conjugate to q. Strikingly, we find that the CM motion
experiences significant anomalous velocity, linked to the
Berry curvature of the evolution of the particle-hole (PH)
pair wave function as q evolves across the CM. We demon-
strate that these qualitative features survive the introduction
of finite bandwidth and Berry curvature inhomogeneity,
and discuss the results in a microscopic model of h-BN
TBG. Our work illustrates that correlated ground states in
moiré heterostructures can host unconventional excitations,
whose many-body physics we explore elsewhere [11].
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Exactly solvable model.—We exploit the topological
equivalence between jCj ¼ 1 Chern bands and LLs, and
consider a system of four flavors of electronic LLs confined
to the plane [Fig. 1(a)]. The two valleys τ ¼ � experience
opposite magnetic fields B ¼ −τBẑ, chosen to model the
Chern band structure of TBG, and we neglect Zeeman
splitting since there is no real external magnetic field. In
Landau gauge Aτ ¼ −τBxŷ, the lowest Landau level (LLL)
wave functions are ϕkτðrÞ ∝ eikye−ðx−τkÞ2=2, which are
created by c†kτσ. We take lB ≡ ðℏ=eBÞ1=2 ¼ 1 throughout.
The projected LLL Hamiltonian is [12]

Ĥ ¼ 1

2

X

kpq
ττ0σσ0

Vττ0 ðk; p; qÞc†kþq;τσc
†
kþp−q;τ0σ0ckþp;τ0σ0ck;τσ

−
X

kpτσ

Vτþðk; p; 0Þc†kτσckτσ þ const; ð1Þ

where the second line is a uniform background charge
(equivalent to a filled τ ¼ þLL), and UðrÞ ¼ e2=r
describes Coulomb interactions with LLL matrix elements
Vττ0 ðk; p; qÞ≡ hkþ q; τ; kþ p − q; τ0jÛjk; τ; kþ p; τ0i.
The form of (1) is motivated by TBG, where interactions
have SU(2) spin rotation invariance and the suppressed
intervalley scattering contributions are neglected [6].
We consider a uniform fully spin- and valley-polarized

ground state, assuming without loss of generality that
ðτ; σÞ ¼ ðþ;↑Þ, viz. jGi≡Q

k c
†
kþ↑jvaci. The scenario

with three filled flavors is equivalent via PH conjugation.
Following Ref. [12], we compute the collective mode
spectrum in the time-dependent Hartree-Fock approxima-
tion (TDHFA, equivalent to the generalized random phase

approximation [13]). To do so, we solve the dynamics
restricted to the basis of single PH pairs, created by the
neutral operators b†τσðk; qÞ≡ c†kþq;τσck;þ↑ (where q is the
momentum transfer) that satisfy the equation of motion

−i∂tb
†
τσðk;qÞ¼ ½ϵHFτσ ðkþqÞ− ϵHFþ↑ðkÞ�b†τσðk;qÞ

−
X

k0
Vτþðkþq;k0−k−q;k0−kÞb†τσðk0;qÞ;

ð2Þ

where ðτ; σÞ ≠ ðþ;↑Þ, and the k-independent Hartree-Fock
(HF) energies are ϵHFτσ ¼ −δσ↑δτþ

P
p Vþþð·; p; pÞ.

Equation (2) is closed for a given τ, σ, and q as these
are conserved by the Hamiltonian. Thus, TDHFA is exact
for the one PH subspace when we neglect LL mixing.
We solve (2) by finding operators γ†τσðqÞ ¼R
dkψqτσðkÞb†τσðk; qÞ such that to leading order in γτσðqÞ

½Ĥ; γ†qτσðkÞ� ¼ ωτσðqÞγ†qτσðkÞ, where ωτσðqÞ is the excita-
tion energy. The coefficients ψqτσðkÞ satisfy

½UHF − ωτσðqÞ�ψqτσðkÞ ¼
Z

dk0Tq;τðk; k0Þψqτσðk0Þ; ð3Þ

with kernel Tq;τðk;k0Þ¼ðLy=2πÞVτþðk0þq;k−k0−q;k−k0Þ,
where UHF ¼ ffiffiffiffiffiffiffiffi

π=2
p ðe2=lBÞ. Discretizing Eq. (3) yields a

1D hopping problem for each q, with matrix element
Tq;τðk; k0Þ between sites k, k0.
Intravalley spin-wave mode.—For ðτ; σÞ ¼ ðþ;↓Þ and

fixed q, the hopping kernel Tq;τðk; k0Þ depends only on
k − k0. With the ansatz ψqτσðkÞ ∼ eikα [12], the energy of
this spin-wave collective mode is given by [9,10]

ωþ↓ðq; αÞ ¼ UHF −
Z

dkeikαVþþð·; k − q; kÞ; ð4Þ

plotted in Fig. 1(a). The dispersion is isotropic in the ðq; αÞ
plane, and α can be interpreted as the x momentum [12].
ωþ↓ðqÞ is gapless and quadratic for q → 0 [9,10,14] and as
q → ∞ it saturates to UHF (the loss of exchange energy in
creating a hole) since in this limit electron and hole are
sufficiently distant that their Coulomb energy vanishes.
Intervalley exciton mode.—A more interesting case is

that of intervalley excitations where τ ¼ −: The spectrum is
spin independent since Ĥ is SU(2) symmetric. In fact, the
spectrum ω−σðqÞ is also independent of q, and hence
macroscopically degenerate—a consequence of the “shift
symmetry” of the kernel, Tq;−ðk; k0Þ ¼ Tqþ2δ;−ðk − δ;
k0 − δÞ [15], where increasing q by δ corresponds to
shifting the effective 1D hopping problem by −δ=2. The
sign and the factor of 2 is strongly suggestive of the notion
that b†τσðk; qÞ creates an excitation that couples to the
magnetic field with an effective strength 2eB (recall the
position-momentum locking of LLs, hxi ¼ τkl2B). This
leads to a discrete q-independent spectrum of excitonic
bound states [Fig. 1(a)] described by harmonic oscillator

(a)

(b)

(c)

FIG. 1. (a) Schematic of the four-band LLL model at ν ¼ 1
showing the exchange-splitting UHF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp ðe2=lBÞ and the
different neutral excitation types. (b) Spin wave energy (blue
curve) as a function of y-momentum q for α ¼ 0. Horizontal lines
show the momentum-independent valley-flip exciton energies.
Both modes saturate to UHF. (c) Intervalley exciton spectrum at
qx ¼ 0 in the magnetic Brillouin with increasing bandwidth
w ¼ 0.01, 0.02, 0.03. Calculations were performed on a 20 × 20
momentum-space mesh.
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wave functions ψqτσðk;nÞ∝Hnf
ffiffiffi
2

p ½kþðq=2Þ�ge−½kþðq=2Þ�2

centered at −q=2, where Hn is a Hermite polynomial
corresponding to LLs in an effective magnetic field 2B.
For rotationally invariant interactions we can capture key

features of the excitons [11,15] by working in symmetric
gauge and performing a PH transformation on the τ ¼ þ
valley, yielding a two-body Hamiltonian for the þ hole and
− electron. The CM sector is a LLL problem for a charge
−2e particle in −Bẑ, yielding a macroscopic degeneracy
Nexc ¼ 2NΦ of each valley-flip level due to the doubled
coupling to the field. The relative motion corresponds to a
charge −e=2 particle in the same field and a Coulomb
central potential. Solving this in terms of Haldane pseu-
dopotentials [18] yields discrete exciton binding energies
Em ¼ −ðe2=lBÞ½Γðmþ 1

2
Þ=2Γðmþ 1Þ� (where m ≥ 0 is an

integer and Γ is the gamma function), in agreement with
numerical solution of Eq. (3). The exciton is a composite
neutral object which sees an effectively doubled magnetic
field, and whose CM and relative motion are topologically
nontrivial (due to Landau quantization) for any interaction.
Semiclassical quantization also gives a macroscopic CM
degeneracy and discrete relative energy levels, because of
the Lorentz-force deflection of electrons and holes as they
attract in opposing magnetic fields. In contrast, for the usual
case of identical fields the CM of the PH pair evolves in
zero field and its energy is nondegenerate [19].
Perturbations away from the LL limit.—We are inter-

ested in studying Chern bands with small but nonzero
dispersion and nonuniform Berry curvature. To model
effects of the single-particle dispersion in our LL model,
we transform to the magnetic Bloch basis indexed by two-
dimensional momenta k in the magnetic BZ. Picking a
square unit cell with side a ¼ ffiffiffiffiffiffi

2π
p

enclosing unit flux (for
magic-angle TBG with a ≃ 14 nm, this corresponds to
B ≃ 5 T), the single-particle magnetic Bloch operators are
[6] d†kτ ¼ 1ffiffiffiffi

Nx
p

PNx−1
n¼0 eiτkxðkyþnQÞc†kyþnQ;τ where Q ¼ 2π=a

is the BZ length and the spin index has been dropped as
we are focusing on intervalley modes. Following
Ref. [6] we introduce a potential VðrÞ ¼ −w½cosð2πx=aÞþ
cosð2πy=aÞ�, which is diagonal in this basis and projects to
a single-particle dispersion ϵk¼−we−π=2ðcoskxaþcoskyaÞ
in the LL. Solving the discretized TDHFA equations, we
find that exciton energies evolve with the CM momenta q,
forming bands within the BZ [Fig. 1(c)]. The topology of
exciton bands is encoded in their Berry curvature [3], as we
now summarize [15]. The exciton state is [20]

jψ exc
q i ¼

X

k

ψqðkÞd†kþðq=2Þ;−dk−ðq=2Þ;þjGi: ð5Þ

After PH transforming the þ valley, we can write

juexcq i ¼ e−iqR̂
X

k

ψqðkÞjϕkþðq=2Þ;−ijϕ�
k−ðq=2Þ;þi; ð6Þ

where jϕk;τi are the single-particle Bloch states, and the

e−iqR̂ prefactor ensures that the cell-periodic part juexcq i of
jψ exc

q i satisfies q-independent boundary conditions [21].
The Berry connection and gauge-invariant Berry curvature
are then computed from juexcq i. If aτ ¼ ihuτqj∇qjuτqi and
fτ ¼ ∇q × aτðqÞ are the Berry connection and curvature of
the underlying single-particle bands, the exciton Berry
curvature takes the form

ΩexcðqÞ ¼ ΩspðqÞ þΩeðqÞ þ Ωsp;eðqÞ; ð7Þ

where (defining k� ¼ k� q
2
) the first contribution

ΩspðqÞ ¼
i
4

X

k

jψqðkÞj2ffþðk−Þ − f−ðkþÞg ð8Þ

stems from the single-particle Berry curvature,

ΩeðqÞ ¼ i
X

k

∂qxψqðkÞ∂qyψ
�
qðkÞ − ∂qyψqðkÞ∂qxψ

�
qðkÞ ð9Þ

captures the BZ evolution of the envelope function, and

Ωsp;eðqÞ ¼
i
2

X

k;τ¼�
f∂qy jψqðkÞj2a−τx ðkτÞ − ðx ↔ yÞg ð10Þ

describes the coupling between the envelope function
and the single-particle Berry connection. [Because of the
ambiguity in defining a and the phase of ψkðqÞ, only the
combination Ωe þ Ωsp;e is gauge invariant.] Numerically
ΩexcðqÞ is computed on a finite k mesh by computing
gauge-invariant (non-Abelian) lattice field strengths [22].
Integrating ΩexcðqÞ over the BZ gives a quantized exciton
Chern number Cexc ¼

R
BZðd2q=2πÞΩexcðqÞ.

Armed with this definition we return to our discussion of
perturbing the solvable limit. At w ¼ 0 the bands are flat
and twofold degenerate [23], consistent with the CM
experiencing a doubled effective field. As the bandwidth
is increased, the upper levels merge into a continuum,
which engulfs additional bands as w grows [Fig. 1(c)]. At
large enough w the lowest exciton band dips below E ¼ 0,
signaling an instability to a partially polarized state at the
one-exciton level. We also introduce Berry curvature
inhomogeneity by artificially deforming the Landau gauge
states [15], and find that this leads to a weak exciton
dispersion but preserves the Chern numbers. These results
illustrate that the exciton dispersion arises from the inter-
play of the underlying band geometry, topology, dispersion,
and interactions. We have also explicitly verified that
low-lying exciton bands remain topological with Cexc ¼
1 under these perturbations, even as they acquire dispersion
and Berry curvature fluctuations of their own.
Microscopic calculation in TBG.—We now turn to spin

and valley-flip excitons of h-BN TBG, for which our
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starting point is the continuum model of Ref. [24] with
twist θ ≃ 1.2° lying in the magic-angle regime. We choose
the interlayer couplings wAA ¼ 0.08 eV and wAB ¼
0.11 eV to account for lattice relaxation effects [25,26].
The h-BN alignment is introduced via a sublattice splitting
jΔj ¼ 20 meV on the bottom layer. We use a dual-gate
screened interaction EUðqÞ ¼ ðe2=2ϵϵ0qÞ tanhðqdscÞ with
relative permittivity ϵ ¼ 9.5 and screening length dsc ¼
40 nm [27], and account for interaction double-counting by
measuring the density relative to that of decoupled gra-
phene sheets at charge neutrality [15,28]. Projecting to the
eight central bands for simplicity, we calculate the fully
flavor-polarized self-consistent QAH state at the experi-
mentally relevant filling ν ¼ þ3 [8], from which we
compute the single valley-flip or spin-flip excitonic spectra
in Fig. 2(a) [15]. Consistent with previous studies that
focused on energetics [14,29], we find that the spin-flip
mode is gapless and disperses quadratically at zero
momentum, while the valley-flip mode is gapped. The
energetic separation and narrow bandwidth ≃1 meV of the
lowest valley-flip exciton band [Fig. 2(c)] is promising for
flat-band physics.
For the above parameters, we find that the lowest

two exciton bands have Cexc ¼ 0. We emphasize, however,
that the physics of TBG shows large sample-to-sample
variations sensitive to the precise device parameters and
experimental conditions. Indeed, by varying the substrate
strength, we can induce a set of band touching events which
renders the lowest exciton band topological [Figs. 2(b) and
2(d)]. This reveals that the different terms in Eq. (7) can
give competing contributions to the exciton Berry curva-
ture. Specifically, the nontrivial structure of the envelope

function ψqðkÞ can render exciton bands trivial even if the
underlying single-particle bands have equal and opposite
Chern numbers and yield a nonzero gauge-invariantΩspðqÞ.
Despite these subtleties, it seems likely that h-BN TBG and
other spontaneous QAH systems can host low-lying topo-
logical exciton branches in realistic parameter regimes.
Discussion.—We have studied the properties of excitons

constituted of particles and holes from bands with equal and
opposite Chern numbers, focusing on the Berry curvature
experienced by the exciton center-of-mass momentum as it
evolves across the BZ. We first studied a solvable model and
then showed that universal features are stable to including
finite dispersion and Berry curvature inhomogeneities. Using
these insights, we analyzed the topology of the low-lying
exciton dispersion in h-BN TBG. For realistic interactions
we find substantial exciton Berry curvature, integrating to a
nonzero Chern number for the lowest exciton band in a
subset of the explored parameter space.
As with other topological collective modes [30–32], a

nonzero Chern number for a bulk exciton band indicates the
presence of chiral exciton modes [33–35] localized at the
boundary of the QAH domain, traversing the bulk gap to
connect the band to one with a distinct Chern number.
These modes allow unidirectional exciton transport, acting
as chiral channels for valley charge, but only emerge in
TBG for a narrow range of parameters. However, even
when the lowest exciton band has Cexc ¼ 0, we never-
theless find substantial curvature inherited from the under-
lying Chern bands [Fig. 2(c)]. This can drive anomalous
exciton transport in the bulk [3,5]. Each valley-flip exciton
of QAH systems such as h-BN TBG is associated with a
Uð1Þ valley charge. Since the latter is to very good

(a) (c)

(d)(b)

FIG. 2. (a) Spin- and valley-flip exciton spectrum of ν ¼ þ3 QAH state of TBG using the continuum model [24], shown along the
KM-ΓM-KM line in the moiré BZ. (b) As substrate potential is varied, intervalley exciton bands cross at ΓM in a topological transition
where the Chern numbers of the lowest bands change as indicated with jΔCexcj ¼ 1. (c) Berry curvature (multiplied by the moiré BZ
area) and exciton energy for the lowest valley-flip band of (a) in the moiré BZ. The origin ΓM and the reciprocal lattice vectors
b1ð2Þ
M ¼ ffiffiffi

3
p

kθð�1=2;
ffiffiffi
3

p
=2Þ are indicated, where the moiré wave vector kθ ¼ ð8π=3 ffiffiffi

3
p

aÞ sin θ
2
. (d) Same as (c) but for the Cexc ¼ −1

band of the final panel of (b). System size is 20 × 20.
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approximation conserved in these systems, excitons are
likely long-lived. Direct optical addressing of these exci-
tons is challenged by the momentum mismatch between the
valleys; however, it may be possible to supply this “missing
momentum” from another source, e.g., phonons [36]. As
conserved bosons in a flat topological band, these valley-
flip excitons are a potential platform for engineering neutral
bosonic quantum Hall states, a question that we address in a
companion work [11].
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