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We present exact diagonalization results on finite clusters of a t-J model of spin-1=2 electrons with random
all-to-all hopping and exchange interactions. We argue that such random models capture qualitatively the
strong local correlations needed to describe the cuprates and related compounds, while avoiding lattice space
group symmetry breaking orders. The previously known spin glass ordered phase in the insulator at doping
p ¼ 0 extends to a metallic spin glass phase up to a transition p ¼ pc ≈ 1=3. The dynamic spin susceptibility
shows signatures of the spectrum of the Sachdev-Ye-Kitaev models near pc. We also find signs of the phase
transition in the entropy, entanglement entropy, and compressibility, all of which exhibit a maximum near pc.
The electron energy distribution function in the metallic phase is consistent with a disordered extension of the
Luttinger-volume Fermi surface for p > pc, while this breaks down for p < pc.
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Two recent experiments [1,2] have shed new light on the
transformation in the metallic parent state of the cuprate
superconductors near optimal doping, while also high-
lighting the central theoretical puzzles. Angle-dependent
magnetoresistance measurements in La1.6−xNd0.4SrxCuO4

[1] are compatible with a Luttinger-volume “large” Fermi
surface only at a hole doping p > pc ≈ 0.23. Nuclear
magnetic resonance and sound velocity measurements in
La2−xSrxCuO4 [2] in high magnetic fields have uncovered
glassy antiferromagnetic order for p < pc ≈ 0.19. These,
and other, observations show that the parent metallic state
of the cuprates exhibits Fermi liquid behavior for p > pc,
and transforms to an enigmatic pseudogap metal with
glassy magnetic order for p < pc. Observations also
indicate that the reshaping of the Fermi surface, and the
onset of the pseudogap, for p < pc cannot be explained by
long-range antiferromagnetic order, which sets in at a
doping smaller than pc.
Here, we present exact diagonalization results on clusters

of N sites of a t-J model with random and all-to-all hopping
and exchange interactions [see Eq. (1)]. In the thermody-
namic limitN → ∞, the replica-diagonal saddle point of this
model and a related Hubbard model [3] are described by
(extended) dynamic mean-field equations in which the
disorder self-averages [4]. Moreover, closely related
mean-field equations also appear in nonrandom models in
high spatial dimensions [9,10], indicating that the self-
averaging features of the random models properly capture
generic aspects of strong correlation physics. A direct
solution of the N ¼ ∞ replica-diagonal saddle point of
the Hubbard model is presented in a separate paper [11],

with complementary results which are consistent with our
conclusions below.
The insulating model at p ¼ 0 has been studied

previously by exact diagonalization [12], and a non-self-
averaging spin glass ground state was found. We find
similar results at p ¼ 0, but with a reduced estimate for the
magnitude of the spin glass Edwards-Anderson order
parameter q. At nonzero p, we find that q decreases
monotonically, vanishing at a quantum phase transition
pc ≈ 1=3. We present several results for thermodynamic,
entanglement, and spectral properties across this transition.
All our results are consistent with the presence of a self-
averaging Fermi liquid state for p > pc; in particular, we
find that the one-particle energy distribution function is
consistent with a disordered analog of the Luttinger
theorem [4]. The entropy, entanglement entropy, and
compressibility all have maxima near pc. We find that
the low-frequency dynamic spin susceptibility matches that
of the Sachdev-Ye-Kitaev (SYK) class of models [13,14]
over a significant range of frequencies near pc; this
includes a subleading contribution which arises from a
boundary graviton in dual models of two-dimensional
quantum gravity [15–19]. Such spectral features are not
present in theories that treat the transition at p ¼ pc in a
Landau-Ginzburg-Hertz framework for the onset of spin
glass order in a Fermi liquid [20,21].
Random t-J model.—We consider the Hamiltonian,

H ¼ 1ffiffiffiffi
N

p
XN
i≠j¼1

tijPc
†
iαcjαPþ 1ffiffiffiffi

N
p

XN
i<j¼1

JijSi · Sj; ð1Þ
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where P is the projection on nondoubly occupied sites and
Si ¼ ð1=2Þc†iασαβciβ is the spin operator on site i. The
hoppings tij ¼ t�ji and real exchange interactions Jij are
independent random numbers with zero mean and variance
t2, J2. Henceforth, we set t ¼ J ¼ 1. We work in the
canonical ensemble, where our system has a fixed particle
(hole) density, n (p ¼ 1 − n). At p ¼ 0, hopping is
prevented due to the double occupancy constraint, and
the model reduces to an infinite-range Heisenberg model
with random couplings. The p ¼ 0 model has been studied
analytically by generalizing the SUð2Þ symmetry to
SUðMÞ and taking a large-M limit [13,22,23], and numeri-
cally for the case ofM ¼ 2 [12,24]. For SUð2Þ, a spin glass
phase is found below a critical temperature Tc ≈ 0.10J.
When doping is present, Ref. [25] predicts a disordered
Fermi liquid phase for all nonzero values of p in the large-
M limit. However, it was recently argued [26,27] that for
the case of SUð2Þ, the spin glass phase should persist up to
a critical finite value of doping pc corresponding to a
quantum critical point separating the spin glass phase from
a disordered Fermi liquid. Near criticality, the model is
predicted to exhibit SYK-like criticality with a nonzero
extensive entropy and a linear-in-temperature resistivity
[28]. In a weak-coupling renormalization group, this
critical point emerges when the three fractionalized exci-
tations in the t-J model become degenerate in energy,
leading to a zeroth order prediction of pc ¼ 1=3.

Dynamical spin response at T ¼ 0.—We first present
results on the nature of the spin correlations at T ¼ 0,
providing evidence that the spin glass phase shown to exist
at p ¼ 0 is stable for small values of doping, up to a critical
value of doping near p ¼ 1=3. Using the Lanczos algo-
rithm, we calculate the spectral function at T ¼ 0,

χ00ðωÞ ¼ 1

3

X
α

1

N

X
i

X
n

jhψnjSαi jψ0ij2

× ½δðω − ðEn − E0ÞÞ − δðωþ ðEn − E0ÞÞ�; ð2Þ

where numerically the δ functions are replaced by
Gaussians with a small variance. The signature of spin
glass order, limt→∞ð1=NÞPihSið0ÞSiðtÞi ¼ q ≠ 0, is
reflected by a qδðωÞ contribution to the dynamical structure
factor SðωÞ, which is related to the spectral function at
T ¼ 0 by χ00ðωÞ ¼ SðωÞ − Sð−ωÞ. For a finite system size,
the exact δ function in SðωÞ is replaced by a peak at low
frequency, whose width approaches 0 in the thermody-
namic limit and whose total spectral weight gives q.
Therefore, the spin glass contribution to χ00ðωÞ for finite
systems is given by a low-frequency peak, and was
analyzed for this model at p ¼ 0 in Ref. [12]. Above
pc, a disordered Fermi liquid is expected to have a low-
frequency behavior of χ00ðωÞ ∼ ω.
The spectral function for the random t-J model, calcu-

lated using the Lanczos algorithm on an 18-site cluster, is
shown for several values of doping in Fig. 1. A prominent
hump at low frequency for dopings p≲ 0.4 suggests the
presence of spin glass order in this range of doping.
However, a large-N analysis of this hump must be
performed in order to verify that the hump asymptotes
to a δ function in the thermodynamic limit. To do this, we
first subtract off a background contribution to account for
the rest of the spectral weight. Anticipating SYK behavior
near the critical point at low frequencies, we subtract a
spectral weight obtained by rescaling the solution of the
Schwinger-Dyson equations of the p ¼ 0 model in the
large-M limit [13,18,19] (we rescale J, while preserving
total spectral weight). This SYK spectral weight has a
leading term χ00ðωÞ ∼ sgnðωÞ as jωj → 0 at T ¼ 0 [which
generalizes to tanh ðω=2TÞ at low T]. The next-to-leading
SYK term depends linearly in ω, and arises from the
boundary graviton in the holographic dual [18,19]. It is
important to note that the exponents of these two leading
SYK contributions are universal and independent of M.
Away from the critical point and in the spin glass phase, we
find that the spectral function is described well by a
combination of the SYK result and a low-frequency hump.
A large-N analysis of this low-frequency hump, described
in more detail in the Supplemental Material [4], confirms
that the variance of the hump vanishes in the thermo-
dynamic limit, whereas the spectral weight, shown in
Fig. 1, remains nonzero. Our analysis gives a large-N
estimate of q ∼ 0.02 at p ¼ 0. For larger values of doping,

FIG. 1. The spectral function χ00ðωÞ of the random t-J model,
averaged over 100 disorder realizations on an 18-site cluster. At
low dopings, a sharp peak at low frequency at low doping is
indicative of spin glass order. With increasing doping, the
magnitude of this peak is reduced, and the low-frequency
behavior closely resembles the rescaled spectral function of
the large-M SYK theory [13,18,19]. Inset: After an extrapolation
to the thermodynamic limit, the integrated weight of the low-
frequency peak is nonzero, indicating spin glass order. This
weight vanishes near p ≈ 0.4. Plotted is the integrated weight for
8 ≤ N ≤ 18 (as a gradient from red to blue) and the large-N
extrapolation with error bars.
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q decreases from its value at p ¼ 0, eventually vanishing at
some critical value of doping pc. By linearly extrapolating
the large-N prediction for q to higher dopings, we obtain an
estimate of pc ¼ 0.420� 0.007. Around this range of
dopings, the spectral function shows good agreement with
the large-M critical prediction given in Fig. 1. At dopings
well above p ¼ 0.4, we find the spectral function to be
largely independent of system size. No gap at low fre-
quency is visible, and χ00ðωÞ ∼ ω behavior consistent with
Fermi liquid predictions is clear. We will provide a more
rigorous verification of the Fermi liquid phase at higher
dopings via Luttinger’s theorem later in the Letter.
Thermodynamics and entanglement.—We investigate the

specific heat and thermal entropy given by

C ¼ ∂E
∂T and S ¼ logðZÞ þ E

T
; ð3Þ

where Z denotes the canonical partition function and
E ¼ hHi the internal energy. Results for system sizes
N ¼ 12, 16, 18 are shown in Fig. 2. To obtain the results
on system sizes N ¼ 16, 18 we employed thermal pure
quantum (TPQ) states [29,30] as described in Refs. [31–33]
similar to the finite-temperature Lanczos method [34,35]
(see Ref. [4] for details). For each set of random couplings,
we sampledR ¼ 5 TPQ states, cf. Ref. [32]. Error estimates
have been obtained from 1000 (400, 100) random cou-
plings for N ¼ 12 (16, 18).
The specific heat for p ¼ 0 in Fig. 2(a) exhibits a broad

maximum at T ≈ 0.25, in agreement with previous results
[12]. At small values of doping p≲ 1=6, this maximum
remains at T ≈ 0.25, while we observe an increase of the
specific heat at higher temperatures. The maximum is
gradually shifted toward a higher value T ≈ 0.50 for
dopings from p ¼ 1=4 to p ¼ 1=2. At low temperatures
we observe that the specific heat is approximately linear in
temperature, with a maximal slope attained between
dopings p ¼ 0.20 and p ¼ 0.40. The linear-in-T coeffi-
cient of the specific heat, γ ¼ C=T, is shown in Fig. 2(b).

We observe an increase of γ when lowering the temperature
for all values of doping. We show γ at temperature
T ¼ 0.05 as a function of doping in Fig. 2(c) for
N ¼ 12, 16, 18. At this temperature, the maximum is
attained at p ≈ 0.25. However, we find that this maximum
is dependent on the temperature. At temperatures below
T ¼ 0.05 sample fluctuations become too large for a reliable
estimate of the maximum. We note that a divergence of the γ
coefficient has been reported at the pseudogap quantum
critical point in cuprate superconductors [36].
The thermal entropy for different temperatures and

N ¼ 12, 16, 18 is shown in Fig. 2(d). Again we observe
maxima at dopings between p ¼ 0.20 and p ¼ 0.40
depending on temperature. At T ¼ 0.05 the maximum is
attained at

p̃ ≈ 0.296� 0.025: ð4Þ

We refer to the Supplemental Material [4] for more
discussion of the T dependence of the thermal entropy.
To access the limit T → 0 we calculate the von Neumann
entanglement entropy of the ground state:

SvNðAÞ ¼ −Tr½ρA log ρA�: ð5Þ

Here, ρA ¼ TrBðjψ0ihψ0jÞ is the reduced density matrix of
the ground state jψ0i on a subsystem A. B denotes the
complement of A. Results for SvNðAÞ for subsystem sizes
M ¼ 1, 2, 3, 4 and total system sizes N ¼ 10, 12, 16 are
shown in Fig. 3. We find that the single-site (M ¼ 1) and
two-site (M ¼ 2) entanglement entropy are well converged
as a function of total system size N. For a N ¼ 16 site
cluster and M ¼ 4 we estimate the maximum to be located
at

p̃ ≈ 0.285� 0.024 ½fromSvNðAÞ�; ð6Þ

in agreement with our estimate obtained from the thermal
entropy at T ¼ 0.05 in Eq. (4).

(a) (b) (c) (d)

FIG. 2. Thermodynamics of the random t-J model for system sizes N ¼ 12, 16, 18, indicated by increasing opacity. (a) The specific
heat C as a function of temperature for various values of doping. (b) The linear-in-T coefficient of specific heat, γ ¼ C=T, for various
dopings as a function of temperature, and (c) for T ¼ 0.05 as a function of doping. (d) The thermal entropy S as a function of doping for
various temperatures.
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Finally, we investigate the charge susceptibility
(compressibility),

χc ¼
∂n
∂μ ¼

�∂2e
∂n2

�−1
¼

�∂2e
∂p2

�−1
; ð7Þ

computed by taking the inverse of the second derivative of
the internal state energy density e ¼ E=N with respect to
doping p. Here, the chemical potential is given by
μ ¼ ∂e=∂n. Results for different temperatures at N ¼ 18
are shown in Fig. 3(b). At temperatures T ¼ 0 and T ¼ 0.1
we detect a maximum at doping p ¼ 1=3. We observe a
shoulderlike feature at lower doping. At higher temper-
atures T ¼ 0.3 and T ¼ 0.5 this feature develops into a
maximum at p ≈ 0.2. We notice that this shift matches the
shift of p̃ in the thermal entropy shown in Figs. 2(b) and
2(c). We note that the occurrence of a maximum in the
compressibility, specific heat coefficient, and local
entanglement entropy has been recently discussed in
cluster-dynamical mean field theory studies of the
Hubbard model without randomness in relation to the
pseudogap and Mott critical points [37–40].
Luttinger’s theorem.—Having found strong signatures of

a spin glass phase persisting from half filling up to
pc ≈ 1=3, we now provide evidence of a Fermi liquid
phase at higher values of doping, which vanishes at a
critical value of doping near the onset of spin glass order.
To verify the presence of a Fermi liquid phase, we introduce
the one-particle energy distribution function,

N ðϵÞ ¼ 1

N

X
λ

δðϵ − ϵλÞ
X
ijσ

hλjiihc†iσcjσihjjλi; ð8Þ

where jλi are the single-particle noninteracting eigenstates
with energy ϵλ, obtained by diagonalizing the hopping
matrix tij. This quantity is analogous to the particle
occupation number in momentum space nðkÞ commonly

used in systems with translational invariance. For a non-
interacting system with fixed particle number n, the
averaged quantityN ðϵÞ converges toDðϵÞθðϵ − ϵFÞ, where
DðϵÞ is the single-particle density of states and ϵF is the
Fermi energy, defined by

DðϵÞ ¼ 1

N

X
λ

δðϵ − ϵλÞ; n ¼ 2

Z
ϵF

−∞
dϵDðϵÞ: ð9Þ

For the interacting system, we show in the Supplemental
Material [4] that, because the random couplings are all to
all, N ðϵÞ displays self-averaging properties in the thermo-
dynamic limit N → ∞. In this limit, the signature of
Luttinger’s theorem is a discontinuity of N ðϵÞ at the
noninteracting value of ϵF defined in Eq. (9).
In Fig. 4, we plot the quantityN ðϵÞ=DðϵÞ, averaged over

1000 realizations on a 16-site cluster. The density of states
DðϵÞ is a semicircle distribution in the large-N limit;
however, in order to account for finite-size corrections to
this distribution, we instead use the numerically calculated
value ofDðϵÞ obtained from our data. Although the drop in
particle occupation at the Fermi energy is substantially
broadened due to interactions and finite-size effects, the
location of the inflection point still reliably tracks the
location of the Fermi energy predicted by Luttinger’s
theorem at high values of doping as shown in Fig. 4.
The effects of the infinite-strength Hubbard repulsion
becomes stronger at lower values of doping, eventually
causing a breakdown of Luttinger’s theorem at a critical
doping 0.38 < pc < 0.44, which is also the location where
spin glass order appears to emerge.
Discussion and conclusion.—Our numerical results

demonstrate a transition in the random all-to-all t-J model
from a spin glass to a disordered Fermi liquid at a critical
value of doping. The near-critical behavior has similarities

(a) (b)

FIG. 3. (a) The ground state entanglement entropy SvN of
subsystems of size M. Results are compared for total system size
N ¼ 10, 12, 16, shown as increasing opacity. The maxima are
attained at values close to p ¼ 1=3, indicated by the gray dashed
line. (b) Charge susceptibility χc for different temperatures at
N ¼ 18. The low-temperature maximum at doping p ¼ 1=3 is
shifted toward a smaller doping p ≈ 0.2 at higher temperatures.

(a) (b)

FIG. 4. (a) At high values of doping, the one-particle energy
distribution function drops sharply near the energy level predicted
by Luttinger’s theorem (marked by crosses). At lower values of
doping, this function becomes more broadened, suggesting a
breakdown of Luttinger’s theorem. (b) A comparison of the Fermi
energy given by Luttinger’s theorem and the numerically com-
puted value given by the inflection point of the one-particle
energy distribution function. For a 16-site cluster, the two show
good agreement up to a critical value between 6=16 ¼ 0.38 and
7=16 ¼ 0.44, in contrast with the same quantity computed for
free fermions which agree well for all values of doping.
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to the criticality of SYK models, consistent with recent
theoretical proposals [26] and numerical results on related
systems [3]. We find a near-critical dynamic spin
susceptibility which is consistent with the SYK behavior
χ00ðωÞ ∼ sgnðωÞ½1 − gjωj þ � � �� over a significant fre-
quency regime; the g term is a universal boundary “grav-
iton” contribution. This is the first appearance of such
features in a doped spin-1=2 SU(2) model. SYK criticality
also predicts an extensive zero temperature entropy: we do
find a maximum in the entropy near the critical point, but
our finite-size data do not allow us to identify if there
is an extensive contribution. However, we note that for
SUðM ¼ 2Þ models, SYK criticality is preempted at small
enough T by a spin glass instability [11,23], and so the
extensive T ¼ 0 entropy is not ultimately expected. We also
find a maximum in the entanglement entropy, specific heat
coefficient, and compressibility near criticality.
An interesting observation is that the breakdown of

Luttinger’s theorem coming from high doping, as well as
the vanishing of spin glass order from low doping, occurs
near p ¼ 0.4, which differs from the maxima in the
thermodynamic and entanglement entropy closer to
p ¼ 0.3. While the system sizes accessible to our methods
are relatively small and only discrete values of doping are
accessible, recent extended dynamical mean field thoery
calculations of the t-J model with finite Hubbard repulsion
[11] also give evidence of SYK criticality occurring at a
lower value of doping than the spin glass-Fermi liquid
transition. These observations are consistent with the spin
glass instability of SYK criticality for finite M [23] noted
above. Understanding the nature of this separation, and the
very low T at which the spin glass instability of SYK
criticality appears, remain open questions to be explored.
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