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A complete, gauge-invariant computation of two-loop virtual corrections involving closed fermion loops
to the polarized Møller scattering asymmetry is presented. The set of contributions involving two closed
fermion loops and the set involving one closed fermion loop are numerically similar in magnitude to the
one-loop bosonic corrections and yield an overall correction of 1.3% relative to the tree level asymmetry.
We estimate sizes of the remaining two-loop contributions and discuss implications for the upcoming
MOLLER (Measurement of a Lepton-Lepton Electroweak Reaction) experiment.
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Introduction.—Precision measurements of electroweak
processes have played a vital role in the development and
testing of the standard model (SM) of particle physics. With
the discovery of the Higgs boson at the CERN Large
Hadron Collider, the focus of precision tests now falls
squarely on the search for signs of physics beyond the SM
(BSM). While a variety of open questions clearly point to
the existence of BSM physics, it remains to be determined
at what mass scale this physics lives and how it interacts
with the known elementary particles of the SM.
A powerful probe in this context is parity-violating

electron scattering (PVES). The relevant observable in
PVES experiments is the asymmetry ALR in the cross-
section when otherwise identical beams of longitudinally
polarized electrons of left (L) and right (R) helicities scatter
from a fixed target:

ALR ¼ dσL − dσR
dσL þ dσR

: ð1Þ

Historically, the measurement ALR in deep-inelastic
electron-deuteron scattering singled out the Glashow-
Weinberg-Salam theory [1–3] of the electroweak interac-
tion from other alternatives and provided the first
measurement of the all-important weak mixing angle,

θW . Improved results were later obtained by a variety of
PVES measurements at low energies, along with observa-
tions of parity violation in atomic Cesium and neutrino-
nucleus deep-inelastic scattering. Parity-violating (PV)
Møller scattering provides one of the theoretically cleanest
such tests. The first measurement of this asymmetry was
made by the E158 Collaboration at SLAC in the mid-2000s
[4], yielding a confirmation of the predicted running of
sin2 θW with 6σ significance.
A new, more precise measurement of the PV Møller

asymmetry—dubbed the MOLLER (Measurement of a
Lepton-Lepton Electroweak Reaction) experiment and
approved to run at the Jefferson Lab [5,6]—aims to
determine ALR with a 2.4% uncertainty. Assuming only
SM contributions, the MOLLER experiment will yield a
value of sin2 θW with an uncertainty comparable to the
earlier determinations in high energy eþe− annihilation.
Within the SM, this measurement can be interpreted as a
precision test of the scale dependence of sin2 θW [7–9]. Its
value at μ ¼ mZ can be obtained either from fits to high
energy electroweak precision observables, while PVES
experiments yield sin2 θW at a low scale μ ≪ mZ.
More significantly, the MOLLER experiment will pro-

vide a new probe for BSM physics that could reside at high
or low mass scales. Examples include 1–10 TeV doubly
charged scalar bosons that are implied by left-right sym-
metric models for the nonvanishing neutrino masses [10]
and a light “dark” Z boson that, under certain conditions,
may also account for the observed deviation of the
muon anomalous magnetic moment from SM predictions
[11–13]. In both examples, the PV Møller asymmetry
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provides a complementary probe to other tests at low and
high energies.
The unique potential of the PV Møller scattering follows

from two features: the purely leptonic character of the
process and a fortuitous suppression of the leading-order
asymmetry by 1–4 sin2θW (sin2 θW is numerically close to
1=4). Specifically, the theoretical prediction for the PV
Møller asymmetry can be written as [14]

ALR ¼ GμQ2ffiffiffi
2

p
πα

1 − y
1þ y4 þ ð1 − yÞ4 ð1 − 4sin2θW þ ΔQe

WÞ;

ð2Þ

where y ¼ Q2=s and ΔQe
W accounts for radiative

corrections.
Some terms (SM and possibly BSM) entering through

ΔQe
W do not carry the factor 1–4 sin2θW and thus their

relative impact is enhanced. Importantly, the next-leading-
order (NLO) electroweak corrections, whose relative
impact should be nominally OðαÞ ∼ 0.01, are roughly
40% in magnitude [15]. These corrections are dominated
by contributions from closed fermion loops that enter the
running of sin2 θW . The WW and γZ boxes also produce
sizeable corrections. Given this enhanced NLO sensitivity,
it is important to determine the magnitude of next-to-next-
to-leading-order (NNLO) SM corrections if one wishes to
interpret correctly a 2.4% measurement of ALR in terms of
BSM physics. Partial results at the NNLO level have been
presented in Refs. [16–19]. Furthermore, second-order
QED effects have been studied in the context of elec-
tron-proton scattering [20], which shares many features
with electron-electron scattering.
In what follows, we report on a computation of all

NNLO contributions involving closed fermion loops. This
subset of the complete NNLO electroweak corrections is
gauge-invariant and thus constitutes a well-defined con-
tribution to the asymmetry. Since closed fermion loops
dominate the NLO corrections and since they entail a sum
over all colors and flavors of SM fermions, we expect them
to generate the leading effect at NNLO. We find a resulting
1.3% correction to the leading-order asymmetry, again
significantly larger than one might expect based on α=4π
counting. As we discuss below, we expect the contributions
from the remaining NNLO corrections to be smaller in
magnitude. We thus anticipate that the overall uncertainty
in the SM prediction for ALR lies below the planned
experimental uncertainty.
Method.—We calculate the left-right asymmetry by

expanding Eq. (1) up to two-loop order. Nonvanishing
contributions to ALR arise from the interference of a purely
electromagnetic amplitude with the PV component of the
weak neutral current amplitude arising from the Z exchange,
with the electromagnetic contributions dominating the
denominator in Eq. (1). For these building blocks, the
NNLO corrections to dσ stem from two-loop matrix elements

contracted with Born amplitudes, as well as the interference
of two one-loop matrix elements. The two-loop matrix
elements receive contributions from genuine two-loop self-
energy, vertex, and box diagrams and from one-particle
reducible two-loop diagrams (see Fig. 1 for examples).
When counting the numbers of fermion loops, we do so

at the level of the final observable ALR. This means that we
include contributions from two-loop diagrams with at least
one closed fermion loop, as well as products of a one-loop
diagram with a fermion loop with another one-loop dia-
gram. However, for consistency we exclude products of
one-loop diagrams without closed fermion loops that could
arise from interference terms obtained by expanding the
denominator of Eq. (1) to two-loop order.
Logarithmically enhanced contributions from virtual

photon loops cancel out in the ratio (1). While individual
loop contributions exhibit IR divergences, cancellation
takes place once all terms that contribute to the ratio have
been combined. We use a small photon mass mγ and
electron mass me to regulate the soft and collinear
divergences appearing at intermediate steps, respectively.
The real photon radiation contributions require a separate
treatment and depend on the kinematic acceptances specific
to the experiment. We do not consider them here.
There are also UV divergences, for which we employ

dimensional regularization. The UV divergences are elim-
inated by appropriate renormalization conditions. We
employ a renormalization scheme similar to Ref. [15], where
the on-shell (OS) scheme is used for the electromagnetic
coupling and the Z boson, Higgs boson, and fermion masses.
For the weak mixing angle sin2 θW , we use the MS
renormalization scheme to make contact with descriptions
of sin2 θW as a running parameter in the literature.
Specifically, we use the MS scheme in the full SM without
any decoupled degrees of freedom, which ensures that
sin2 θWðμÞMS is gauge-invariant. By default, the scale choice
μ ¼ mZ is used in the following. Expressions for the OS
counterterms can be found in Ref. [21].
To guarantee the cancellation of UV divergences, one

must impose the relation sin2 θW ¼ 1 −m2
W=m

2
Z, where

(a) (b)

(d)

(e)

(c)

FIG. 1. Examples of two-loop Feynman diagrams with at
least one closed fermion loop for (a) two-loop self-energies,
(b) two-loop box contributions, (c) reducible contributions, and
(d,e) two-loop vertex corrections.
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mW and mZ are the renormalized gauge boson masses in
any given renormalization scheme (not necessarily the OS
scheme). This implies that one cannot choose an indepen-
dent renormalization condition for mW, but instead the mW
counterterm is restricted to

δm2
W ¼ ð1 − sW2Þδm2

Z;OS −m2
Zδs

2

W;MS
; ð3Þ

where sW2 ≡ sin2 θWðμÞMS. The renormalized mass,
mW;ren, defined in this fashion differs from the OS mass,
mW;OS, and an additional finite correction would be needed
to relate the two. However, given that mW is never used as
an input or output in our calculation, this correction is never
explicitly needed in our case.
When performing calculations in dimensional

regularization, one has to be careful about the treatment
of γ5. In d ≠ 4 dimensions, the anticommutation
rule fγμ; γ5g is incompatible with the trace identity
trfγαγβγγγδγ5g ¼ −4iεαβγδ. Contributions from such traces
arise from vertex diagrams with a triangle subloop [see
Fig. 1(e)] and from box diagrams. However, in both of these
cases, contributions stemming from ε tensors are UV finite
(after including the subloop counterterms for the box graphs)
and thus can be computed in 4 dimensions without ambi-
guity. (A similar argument holds for a set of useful identities
for 4-fermion scattering matrix elements [22,23].) Also, we
have confirmed that the triangle diagrams with photons and
Z bosons vanish in the limit of vanishing fermion masses, as
required by the anomaly cancellation condition.
Throughout the calculation, we exploit the hierarchy of

scalesm2
e ≪ Q2 ≪ m2

weak, wheremweak ∼mW ,mZ,mH,mt.
In practice, this means that the mass of the external
electrons is set to zero everywhere except where it is
needed to regularize collinear singularities. Furthermore,
we perform a large-mass expansion for m2

weak ≫ Q2, up to
order m−2

weak, which is the leading order needed for PV
effects [14,15]. This expansion is based on the method of
regions [24–26], and in many cases it leads to products of
one-loop integrals and two-loop vacuum integrals, which
are analytically known [27–30]. The only exceptions are
vertex and box diagrams with a light fermion loop inside a
photon or photon-Z propagator [see Fig. 1(b)]. Here, “light
fermion” refers to any SM fermion except the top quark.
We evaluate these two-loop integrals using the numerical

dispersion integral technique [31] (see also Refs. [32,33]).
Since only the transverse part of the subloop self-energy
Σμνðk2Þ contributes, we decompose it as

Σμν ¼ ½gμνk2 − kμkν�ΠTðk2Þ; ð4Þ

ΠTðk2Þ ¼ cε þ
k2

π

Z
∞

0

dσ
ImfΠTðσÞg

σðσ − k2 − i0Þ : ð5Þ

The contribution of a fermion with mass mf is given by

cε ¼
Ncg1g2
12π

�
1

ε
þ ln

μ2

m2
f

�
; ð6Þ

ImfΠTðσÞg ¼ Ncg1g2
12π

�
1þ 2m2

f

σ

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
f

σ

s
Θðσ − 4m2

fÞ; ð7Þ

where 1=ε ¼ 2=ð4 − dÞ, ΘðxÞ is the Heaviside step func-
tion, andNc ¼ 1 (3) for leptons (quarks). The couplings are
g1g2 ¼ e2Q2

f and g1g2 ¼ f½e2Qfð2s2WQf − I3fÞ�=½2sWcW �g
for the photon and photon-Z self-energy, respectively.
Inserting these expressions into the outer loop leads to
integrals of the form

Z
ddk

iπd=2
NðkÞQ

i½ðkþ piÞ2 −m2
i þ i0�

×

�
cε −

1

π

Z
dσ
σ
ImfΠTðσÞg

k2

k2 − σ þ i0

�
: ð8Þ

Here pi are sets of external momenta, as they appear in a
given vertex or box diagram, and NðkÞ accounts for dot
products (k2, k · pi) and =k in the numerator. The k integral
in Eq. (8) is a conventional one-loop integral, which can be
performed analytically and reduced to basic scalar one-loop
functions using the standard Passarino-Veltman method.
The remaining σ integral, which is UV finite, is easily
evaluated numerically with high precision. It is interesting
to note that the σ integrals involving logm2

γ and logm2
e may

be performed analytically so that the cancellation of IR
singularities in the full result can be checked algebraically.
These dispersion integrals are not well-defined for light

quarks (f ¼ u, d, s) in the inner loop since the dominant
contribution to the integral arises from a region where
k2 ∼m2

f and where hadronization effects become important.
In fact, the same problem already occurs at the one-loop
level for the self-energy contribution to the γ-Z self-energy in
the t and u channel [15,34] due to the fact that Q2 < Λ2

QCD.
The nonperturbative hadronic corrections can be evalu-

ated only approximately. One option is to use effective
quark masses such as the threshold masses derived in
Refs. [8,9]. An alternative possibility is to determine the
dispersion integrals by directly inserting the required
spectral functions derived from data that are provided,
e.g., in Ref. [35]. We opted not to follow this method since
no uncertainty associated with the required flavor sym-
metry hypothesis is reported [36]. Therefore, in our
calculation, we use the threshold quark masses in all places
where mass-dependent terms remain after expanding in
large m2

weak. However, for consistency, we exclude two-
loop self-energy diagrams involving only quark and photon
propagators in the loops, such as in Fig. 1(a) with a photon
inside the loop, since QED effects are already subsumed in
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the nonperturbative hadron dynamics. In addition, follow-
ing Ref. [15], we also set Q2 → 0 in the t-channel and u-
channel self-energies since the differences Πγγ

T ðtÞ − Πγγ
T ð0Þ

and ΠγZ
T ðtÞ − ΠγZ

T ð0Þ are estimated to be negligibly small
[15] (similar for t replaced by u). We leave a more detailed
study of hadronic effects for future work.
As shown in Eq. (2), ALR is commonly normalized in

terms of the Fermi constant Gμ, which is related to SM
parameters according to

Gμffiffiffi
2

p ¼ πα

2s2Wc
2
Wm

2
Z
ð1þ ΔrÞ; ð9Þ

where Δr includes radiative corrections. The required two-
loop contributions to Δr with one or two closed fermion
loops have been taken from Refs. [21,37] (see also Ref. [38]).
The calculation has been carried out with extensive use

of computer algebra tools. Diagrams and amplitudes were
generated with FEYNARTS [39]. For the Lorentz and Dirac
algebra, we employed PACKAGE-X [40] and cross-checked
against private code written in MATHEMATICA. The large-
mass expansion was implemented in-house in two inde-
pendently developed MATHEMATICA programs. Two-loop
integrals with nontrivial numerator structures have been
reduced to simple scalar integrals using FIRE 5 [41] and
using private code based on Ref. [42,43]. For basic one-
loop integrals and two-loop vacuum integrals, analytical
formulas are available [27–30]. We have numerically
checked our implementation of the one-loop formulas
against the COLLIER library [44]. The numerical dispersion
integrals for two-loop vertex and box integrals have been
implemented in C and MATHEMATICA.
Each building block of the final result has been computed

in two independent setups within our collaboration and cross-
checked against each other. We have confirmed cancellation
of UV and IR divergences in the full result by verifying that
the coefficients of the 1=ε, logm2

e, and logm2
γ terms vanish

algebraically. Furthermore, as an intermediate step, we have
reproduced the one-loop result of Ref. [15] and found exact
agreement with the analytical formulas given there.
Results.—To evaluate the numerical impact of the closed

fermion loop NNLO corrections to ALR, we used the
following input parameters:

mZ ¼ 91.1876 GeV; s2W ¼ 0.2314;

mH ¼ 125.1 GeV; mt ¼ 173.0 GeV;

mτ ¼ 1.777 GeV; mb ¼ 3.99 GeV;

mμ ¼ 105.7 MeV; mc ¼ 1.185 GeV;

me ¼ 0.511 MeV; ms ¼ 0.342þ0.048
−0.053 GeV;

mu;d ¼ 0.246þ0.054
−0.057 GeV;

Δα ¼ 0.02761had þ 0.0314976lep; ð10Þ

at the representative kinematic point

ffiffiffi
s

p ¼ 11 MeV; y ¼ 0.4: ð11Þ

Here Δα accounts for the renormalization group running of
the fine structure constant between scales μ ¼ 0 and
μ ¼ mZ and enters our calculation through the OS charge
renormalization. The first number reflects the hadronic
contribution to Δα, which is obtained from eþe− →
hadrons data (see Refs. [35,45,46] for recent evaluations),
while the second number is the perturbatively calculable
leptonic contribution [47].
As explained above, the light fermion masses mf, f ≠ t

enter in loop integrals with a fermionic photon or γ-Z self-
energy subloop. The values for the light quark masses are
taken from Ref. [9]. There is a strong anticorrelation
between the reported uncertainties of ms and mu;d. We
will assume them to be 100% anticorrelated for the results
that we present below.
With these inputs, we obtain numerical results for the

asymmetry (2) as shown in Table I. The first row corre-
sponds to the tree level contribution, and the remaining
rows ΔQe

WðL;nfÞ are the radiative corrections with L loops
and nf closed fermion loops. No resummation of loga-
rithms has been carried out. In particular, the electroweak
logarithms, which conventionally define the running
sin2 θW , are left explicitly in the one- and two-loop results.
The last two rows ΔQe

Wð2;2Þ and ΔQe
Wð2;1Þ are obtained

using our newly computed NNLO corrections to the
asymmetry. The error intervals reflect the hadronic uncer-
tainties due to the threshold quark masses in Eq. (10).
The precision goal for the MOLLER experiment corre-

sponds to a measurement of the weak charge with an
uncertainty of δexpQe

W ¼ 1.1 × 10−3. The NNLO correc-
tions with closed fermion loops add up to

ΔQe
Wð2;2Þ þ ΔQe

Wð2;1Þ ¼ 1.00þ0.012
−0.008 × 10−3; ð12Þ

which is comparable to the experimental target, thus
highlighting the importance of accounting for the NNLO

TABLE I. Numerical estimates of the calculated contributions
to the polarized Møller scattering asymmetry defined in Eq. (2)
through NNLO using input values in Eqs. (10) and (11).
Subscripted indices on ΔQe

WðL;nfÞ refer to the loop order L
and the number of closed loops nf .

Quantity Contribution (×10−3)

1–4 sin2θW þ74.4

ΔQe
Wð1;1Þ −29.0

ΔQe
Wð1;0Þ þ3.1

ΔQe
Wð2;2Þ −0.18þ0.0024

−0.0040

ΔQe
Wð2;1Þ þ1.18þ0.015

−0.010

ΔQe
Wð2;0Þ �0.13 (estimate)
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corrections. On the other hand, anti-correlation between the
hadronic uncertainties in the individual contributions with
one and two closed fermion loops leads to a reduced overall
hadronic uncertainty.
The resulting hadronic uncertainty from quark loops is

negligible compared to the experimental target precision. It
is likely that the our estimate based on quark mass errors
overestimates this uncertainty since we cannot account for
correlations between the quark masses and the K factors in
Ref. [9]. (In fact, when estimating the leading hadronic
effects by plugging these quark masses into the NLO
correction, one finds an uncertainty that is a few factors
larger than the detailed renormalization-group evaluation in
Ref. [9].) A more detailed analysis of hadronic effects will
be given in a future publication.
The correction ΔQe

W depends very mildly on y (i.e., on
the scattering angle). Varying y in the experimentally
relevant range (0.25,0.75) [6], we find that ΔQe

W
changes by 0.04 × 10−3 for the NLO corrections and by
0.01 × 10−3 for the NNLO corrections, both of which are
negligible.
Finally, we attempt to estimate the size of the currently

missing NNLO corrections without closed fermion loops
ΔQe

Wð2;0Þ (called “bosonic” corrections in the following).
For this purpose, we begin by comparing the relative
size of the fermion loop and bosonic correction at
NLO. From Table I, these are ΔQe

Wð1;1Þ ¼ −0.0290 and
ΔQe

Wð1;0Þ ¼ þ0.0031, respectively. Assuming a similar
ratio between the corrections with one closed fermion loop
and the bosonic corrections at NNLO, we obtain an
estimate of 0.13 × 10−3 for the size of the latter. This
would be safely below the experimental target precision.
Conclusions.—To correctly interpret the proposed 2.4%

measurement of the PVasymmetry ALR from the MOLLER
experiment at the Jefferson Lab in terms of BSM physics,
we calculate the NNLO SM contributions to ALR using
large-mass expansion and numerical integration of subloop
dispersion relation. We summarize our results in Table I.
We find that the corrections to ΔQe

W from diagrams with
closed fermion loops are comparable to the experimental
target precision. The dependence of ΔQe

W on the scatte-
ring angle is very mild in the experimentally relevant
range and can be ignored for most practical purposes.
Finally, we also consider the impact of the remaining
bosonic NNLO corrections and estimate them to be
negligible compared to the MOLLER precision goal.
However, it is desirable to confirm this with an explicit
calculation in the future.
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