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Seismicity and faulting within the Earth’s crust are characterized by many scaling laws that are usually
interpreted as qualifying the existence of underlying physical mechanisms associated with some kind of
criticality in the sense of phase transitions. Using an augmented epidemic-type aftershock sequence
(ETAS) model that accounts for the spatial variability of the background rates μðx; yÞ, we present a direct
quantitative test of criticality. We calibrate the model to the ANSS catalog of the entire globe, the region
around California, and the Geonet catalog for the region around New Zealand using an extended
expectation-maximization (EM) algorithm including the determination of μðx; yÞ. We demonstrate that the
criticality reported in previous studies is spurious and can be attributed to a systematic upward bias in the
calibration of the branching ratio of the ETAS model, when not accounting correctly for spatial variability.
We validate the version of the ETAS model that possesses a space varying background rate μðx; yÞ by
performing pseudoprospective forecasting tests. The noncriticality of seismicity has major implications for
the prediction of large events.
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Earthquakes have fascinated and continue to capture the
imagination and interest of physicists, as they express how
the huge, unbridled forces of nature can be organized
according to remarkable regular statistical laws obeying
power-law statistics. The late Per Bak, one of the fathers of
the concept of “self-organized criticality,” was fond of
exclaiming in his talks: “I love this law,” when referring to
(i) the Gutenberg-Richter (GR) distribution of earthquake
seismic moments because it is valid over several decades
more than most known power laws in physical and social
sciences. Several other scaling laws further characterize
seismicity: (ii) the Omori law [the rate of aftershocks
decays as 1=ðt − tmÞp after a main shock that occurred at a
time tm], (iii) a spatial Green’s function quantifying the
power-law decay of the influence of the main shock as a
function of the distance to its aftershocks, (iv) a power
fertility law of the average number of aftershocks triggered
as a function of the magnitude of the main shock,
(v) power-law distributions of the lengths of the faults
on which earthquakes occur, (vi) fractal, multifractal, or
hierarchical scaling of the set of earthquake epicenters as
well as fault networks, and so on. For physicists, these laws
suggest the existence of underlying physical mechanisms
associated with some kind of criticality in the sense of
phase transitions and field theory with zero mass. Indeed,
many proposals in this spirit have been put forward to
rationalize these power laws: self-organized criticality [1,2]
critical point behavior before large earthquakes [3–8],

based on accelerating seismic release [9–12], and combi-
nations of the two [13–16].
The evidence for the criticality of the Earth’s crust is thus

generally inferred from the presence of scale invariance and
power-law scaling. But it is well known that many other
mechanisms can be at the origin of power-law scaling
without the need for invoking criticality [17,18]. In this
context, the class of epidemic-type aftershock sequence
(ETAS) models offers a direct path to calibrate and quantify
the distance to the criticality of earthquake catalogs. ETAS
models combine the scaling laws (i)–(iv) to formulate a
statistical framework that reproduces many of the statistical
features observed in seismicity catalogs and is often used as
the benchmark to assess the skills of competing earthquake
forecasting models [19]. The ETAS models have an exact
branching process representation [20], in which back-
ground earthquakes supposed to be driven by the forces
of plate tectonics (immigrants in the language of epidemic
branching processes) can trigger cohorts of earthquakes
(first-generation “daughters”), themselves triggering sec-
ond-generation events and so on [21]. The ETAS models
exhibit a transition determined by the control parameter n,
called the branching ratio, which is both the average
number of triggered events of first generation per
immigrant and the fraction of all triggered events of any
generation in the catalog [22]. The transition occurring at
the critical value n ¼ 1 separates the subcritical regime
ðn < 1Þ, where the sequence of events is stationary, from
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the supercritical regime ðn > 1Þ for which the number of
earthquakes explodes exponentially with time with a finite
probability [21]. The transition at n ¼ 1 is characterized by
the standard signatures of criticality, such as the diverging
rate μ=ð1 − nÞ of events where μ is the background rate,
nonlinear “susceptibility” at n ¼ 1 [23] and various power-
law statistics [24–27]. A lot of attention has been devoted to
determining the empirical value of n, with most studies
suggesting that n is very close to 1 [28,29]. In contrast,
some other studies averaging over broad tectonic areas find
lower numbers in the range 0.35 to 0.65 [30]. If n ≅ 1, a
significant portion of the Earth’s crust would then function
close to or even exactly at criticality, so that previous
earthquakes trigger most observed earthquakes. If con-
firmed, this has far-reaching consequences for modeling,
predicting, and managing seismic risks.
Within the representation offered by ETAS models,

determining whether the Earth’s crust is at criticality or
not is crucially dependent on the ability to partition the
observed seismicity clustering in space and time between
the background rates and the triggered rates resulting from
previous earthquakes. For instance, a misclassification of
earthquakes as background events due to incomplete
catalogs biases the calibrated branching ratio n downward
[31,32]. On the other hand, failing to account for spatial and
temporal variations of the background rates leads to upward
biases for n, as the variability may be incorrectly attributed
to triggering. This effect has been recently demonstrated in
the time domain for financial time series [33,34]. Here, we
revisit this question of the criticality of the Earth’s crust by
offering an augmented ETAS model that improves on state
of the art by accounting self-consistently for the possible
spatial dependence of the key parameters.
Before presenting our method and results, we briefly

review previous related studies [35–38] that have modeled
the spatial dependence of the background rate μðx; yÞ using a
kernel density estimation. Generally, these studies use
gaussian kernels with adaptive bandwidth. These kernel
density estimates are obtained iteratively using the algorithm
proposed by Ref. [35]. However, for all practical purposes,
these studies fix the parameter on which the adaptive
bandwidth of kernels depends, stating that the choice of
this crucial parameter, which dictates the smoothing of
background intensity in space, is relatively unimportant.
Other studies [30,39] predelineate regions in which all the
parameters are assumed to be uniform and the parameters are
then individually or jointly inferred in each of these regions.
In some other studies, such as Ref. [40], the spatial
probability density function (PDF) of background earth-
quakes is pre-estimated and then fed into the ETAS inversion
machinery. Furthermore, Refs. [29,41,42] infer the optimal
space variation of all ETAS parameters jointly, while more
recently, Ref. [43] has proposed an alternative approach to
nonparametrically model the space variation of background
rate using a Gaussian process prior.

Here, we extend the iterative algorithm of Ref. [35] to
jointly estimate the ETAS parameters and the kernel
parameters used for obtaining the spatially variable back-
ground rate using the expectation-maximization (EM)
algorithm of Ref. [39]. This extended algorithm leads to
an augmented ETAS model that accounts specifically for
the space variation of μðx; yÞ. Using this model, we show
that the value of the branching ratio and other triggering
parameters depend crucially on how the background rate is
modeled. We demonstrate, using synthetic tests, that
ignoring the spatial variation of the background rate leads
to estimated parameters that are highly biased. However,
when the spatial variation of the background rate is
accounted for, the calibrated parameters are close to their
true values and unbiased. We also document this bias effect
in the case of three real catalogs. We then perform rigorous
pseudoprospective experiments and show that the ETAS
model with spatially varying background rates significantly
overperforms the ETAS model with uniform background
rates. To the best of our knowledge, such direct compar-
isons have never been made between these two models.
This gives us confidence that the extended ETAS model is
superior to its spatially invariant counterpart, and thus
reveals genuine characteristics of seismicity.
Self-consistent estimation of a spatially variable back-

ground rate using an extended EM algorithm.— Our
implementation of the ETAS model expresses the seismic-
ity rate λðt; x; yjHtÞ, at any time t and location ðx; yÞ and
conditional upon the history Ht of seismicity up to t, as

λðt; x; yjHtÞ ¼ μðx; yÞ þ
X
i∶ti<t

gðt − ti; x − xi; y − yi; miÞ:

ð1Þ

λðt; x; yjHtÞ receives contributions from the background
intensity function μ and from the sum over all past
earthquakes that can trigger future earthquakes according
to the triggering function given by

gðt− ti;x−xi;y−yi;miÞ

¼Kexp½aðmi−McÞ�ft− tiþcg−1−ωe−t−ti
τ �Tnorm �Snorm

fðx−xiÞ2þðy−yiÞ2þdexp½γðmi−M0Þ�g1þρ :

ð2Þ

This expression combines the fertility law PðmÞ ¼
K exp½aðmi −McÞ� that quantifies the expected number
of first-generation aftershocks (≥ Mc) triggered by an
earthquake with magnitude m, the Omori-Utsu law
ft − ti þ cg−1−ωe−ðt−tiÞ=τ and the spatial Green’s function,
leading to the set ϕ ¼ fμ; K; a; c;ω; τ; d; γ; ρg of para-
meters that characterize the ETAS model. Tnorm and Snorm
are normalization constants for the time and space kernels,
ensuring that they are proper probability density func-
tions (PDF).
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With this formulation, the branching ratio is

n ¼
Z

Mmax

Mc

PðmÞ × fðmÞdm; ð3Þ

defined as the expected number of aftershocks of the first
generation triggered by an earthquake, averaged over all
magnitudes. The averaging over magnitude is thus per-
formed using the GR distribution fðmÞ¼blnð10Þ
½10−bm=ð10−bMc −10−bMmaxÞ�, ∀Mc≤m≤Mmax. Denoting
α ¼ a= ln 10, this yields

n ¼

8><
>:

Kbð1−10−ðb−αÞðMmax−McÞÞ
ðb−αÞð1−10−bðMmax−McÞÞ ; ∀ α ≠ b

Kb lnð10ÞðMmax−McÞ
ð1−10−bðMmax−McÞÞ ; if α ¼ b

: ð4Þ

We consider two variants of the ETAS model:ETASμ,
which features a spatially uniform background rate μ, and
ETASμðx;yÞ, which possesses a space varying background
rate μðx; yÞ. In ETASμðx;yÞ, μðx; yÞ is informed by the spatial
positions of previous earthquakes. The proposed para-
metrization given below in Eq. S1 in Supplemental
Material [44] should not be confused with the triggering
part of the ETAS model given by the second term in the
right-hand side of Eq. (1), which also involves a summation
over previous earthquakes. Here, the guiding idea is that
observed earthquakes occur more frequently where the
background intensity is larger because the background
events are, by definition, the sources of all observed
seismicity. Even if many earthquakes are triggered by
previous earthquakes, their locations are related to that
of their background sources [22,45].
To estimate μðx; yÞ, we extend the EM algorithm

proposed by Ref. [39] as described in detail in the
Supplemental Material, Text S1 [44]. In this algorithm,
μðx; yÞ is inferred by smoothing the location of background
earthquakes, which are dynamically obtained during the
inversion using a power-law kernel [46] with a bandwidth
D and exponent Q, which are estimated along with ϕ.
Dataset.—We apply the extended EM algorithm (Text S1

of Supplemental Material [44]) to catalogs obtained from

two sources: the Advanced National Seismic System
(ANSS) and GeoNet. The ANSS catalog is used for two
study regions: the entire globe and the region around
California. For the area around New Zealand, we use the
GeoNet catalog. The location of ∼600 000 earthquakes
(M ≥ 3) for the entire globe between 1975–2020, as
reported in the ANSS catalog, and of ∼1.2 million and
∼600 000 earthquakes (M ≥ 1) between 1975–2020 in the
study regions surrounding California and New Zealand, as
reported by the ANSS and Geonet catalogs, respectively,
are shown in Figs. S1–3 of the Supplemental Material [44].
Text S2 in Ref. [44] also presents the method to select the
magnitude of completeness Mc for each catalog.
Parameter calibration.—The results of the calibration of

the two ETAS models, ETASμ and ETASμðx;yÞ, on the
global, Californian, and the New Zealand catalogs are
presented in Table I. When going from the ETASμ model
to the ETASμðx;yÞ model, the most remarkable changes are
that (i) the overall background rate increases by nearly 29, 3,
and 16 times for the three catalogs, respectively, while
consequently (ii) the branching ratio n is substantially
smaller for the ETASμðx;yÞ model compared to the ETASμ
model. The other parameters also show substantial changes.
More specifically, the branching ratio is remarkably close to
1 for the three catalogs when calibrated with the ETASμ
model, which would lead to the erroneous conclusion that
the Earth’s crust is critical, as discussed in the introduction.
In contrast, the ETASμðx;yÞ model gives n ≅ 0.45, 0.79, and
0.61 for the global, Californian, and the New Zealand
catalogs, respectively, clearly excluding criticality and quali-
fying the Earth’s crust in the subcritical regime. The differ-
ence between the two spatial intensity of background
earthquakes inferred from the calibrations of the two models
is vividly illustrated in Figs. 1(a) and 1(b) in the case of the
global catalog (and Figs. S4 and S5 in the Supplemental
Material [44] for the Californian and New Zealand catalogs).
We find that not only is the overall background rate is
different between the two models, but also that the spatial
patterns of the density of background earthquakes differ
substantially between the two modeling choices, as one can
observe the much more refined localization of the back-
ground rates along plate boundaries in ETASμðx;yÞ.

TABLE I. ETAS parameters inverted for three catalogs (first column) using the two models ETASμ and ETASμðx;yÞ. The branching
ratio n is inferred using Eq. (4) withMmax ¼ 10, 8.5 and 9 for the global, Californian, and New Zealand catalog, respectively. Parameters
c and t are given in days. Nbkg is the total number of background events per unit time.

Catalog
Model
type

Nbkg
(year−1) log10K a

log10d
(km2) ρ γ

log10c
(days) 1þ ω log10τ

Branching
Ratio n

D
(km) Q

Globe ETASμ 35.35 −0.12 0.84 2.20 0.71 0.56 −3.16 0.79 3.81 1.15 NA NA
ETASμðx;yÞ 1,013.2 −0.72 1.39 1.93 1.03 0.99 −2.08 1.06 3.41 0.45 13.46 0.74

California ETASμ 60.73 −0.22 0.95 −0.59 0.52 1.11 −2.94 0.94 3.87 1.00 NA NA
ETASμðx;yÞ 182.42 −0.37 1.11 −0.73 0.59 1.25 −2.64 1.01 3.67 0.79 4.39 1.07

New Zealand ETASμ 9.08 −0.17 1.06 1.60 0.75 0.00 −3.01 0.89 3.76 1.14 NA NA
ETASμðx;yÞ 149.00 −0.58 1.50 1.17 0.76 0.44 −2.28 1.09 3.37 0.61 11.79 1.49
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Synthetic tests of the bias in branching ratio n due to
uniform background rate.—We now demonstrate that a
realistic synthetic catalog with a relatively smaller branch-
ing ratio as found with the full ETASμðx;yÞ model calibrated
on the real catalogs yields a spuriously large branching
ratio when calibrated with the ETASμ model, and recovers
the correct value when calibrated with the full ETASμðx;yÞ
model. For this, using the full ETASμðx;yÞ model, we
simulate a 50-year long synthetic catalog [47] with earth-
quakes of magnitudes M ≥ 5 for the entire globe using the
parameters that are listed in Table I corresponding to
ETASμðx;yÞ. Using the first ten years of the catalog as
the auxiliary period and the remaining as the primary
period [48], we calibrate the ETASμ model on this synthetic
catalog. The obtained parameters are Nbkg ¼ 22.27yr−1,
log10K ¼ −0.18, a ¼ 1.07, log10d ¼ 2.17, ρ ¼ 0.73,
γ ¼ 0.78, log10c ¼ −3.09, 1þ ω ¼ 0.80, log10τ ¼ 3.9,
n ¼ 1.17 (see Table I). This should be compared with
the true input parameters Nbkg ¼ 1013.2 yr−1 for the
background rate and n ¼ 0.45 for the branching ratio for
the global catalog (Table I). The background rate inverted
with the ETASμ model is too low, and the inferred
branching ratio is too large, being remarkably close to
the value inferred by inverting this model with uniform
background rate μ on the real catalog, on nearly all the
parameters. For instance, the Omori exponents inferred for
the synthetic catalog and the real catalog are 0.80 and 0.79,
respectively. This provides an excellent self-consistent test
and further supports the validity of our hypothesis that the
background rate μðx; yÞ is strongly varying in space. This
suggests that it is absolutely essential to account for the
nonuniform background rate to obtain unbiased parameter
estimates. These synthetic tests also show that the biases
are predictable.
Pseudoprospective forecasting experiments as a valida-

tion step for ETASμðx;yÞ.—We now proceed to show that
ETASμðx;yÞ leads to operationally better forecasts of future
seismic activity by setting up several 30 day long pseu-
doprospective forecasting experiments at different spatial
resolutions and magnitude thresholds Mt of the validation
catalog. For details on these pseudoprospective experi-
ments, we refer the readers to Text S3 in the Supplemental
Material [44]. For more general discussions on the

importance of these experiments and their design, we refer
the readers to Refs. [47,48].
At a given spatial resolution and magnitude threshold

(Mt), the log-likelihood score of a model during a given
testing period is defined as LL ¼ P

N
i¼1 lnPðniÞ, where

PðniÞ is the probability of observing ni earthquakes in the
ith pixel during the testing period, andN is the total number
of equal area pixels that tile the study region. In any pixel,
the probability is constructed using the number of earth-
quakes observed in different simulated catalogs as
described in Text S3 in the Supplemental Material [44].
Once the likelihoods for two models are calculated, the

information gain of one over the other is simply the
difference of their log-likelihoods. Figures 2(a)–2(b) show
the time series of cumulative information gain (CIG) that
the ETASμðx;yÞ model obtains over the ETASμ model in the
368 experiments that we perform with the global catalog
(see similar Figs. S6-8 of the Supplemental Material [44]
for the time series of CIG at different spatial resolutions
and Mt for global, Californian and New Zealand catalogs).
At all spatial resolutions and magnitude thresholds, the
ETASμðx;yÞ substantially outperforms the ETASμ model for
all three study regions.
To quantify if this overperformance of the ETASμðx;yÞ is

statistically significant, we define the mean information

FIG. 1. Spatial density of the earthquakes identified as back-
ground events by the ETASμ and ETASμðx;yÞ models for the
global catalog.

FIG. 2. (a),(b) Time series of cumulative information gain of
ETASμðx;yÞ over the ETASμ model in 368 pseudoprospective
experiments with the global catalog, at nine spatial resolutions
(different colors whose meaning is given in the inset) and two
magnitude thresholds (different panels) of the testing catalog;
(c)–(d) Mean information gain (MIG) of ETASμðx;yÞ over the
ETASμ model in 368 pseudo prospective experiments for the
global catalog, at nine spatial resolutions and two magnitude
thresholds (different panels) of the testing catalog. The error bars
indicate the 99% and 95% confidence interval of the mean
information gain. The two numbers indicate the p value and t
statistic resulting from the student’s t test, in which we test the
null hypothesis that the MIG is equal to 0 against the alternative
that it is larger than 0. When the p value is smaller than 0.05, the
null hypothesis is rejected.
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gain as the average information that ETASμðx;yÞ obtains
over the 368 testing periods. We then test the null
hypothesis that this mean information gain is significantly
larger than 0 against the alternative that it is not, using the
student’s t test. Figures 2(c)–2(d) (and similar Figs. S9-11
for all spatial resolutions andMt for the global, Californian,
and New Zealand catalogs) confirm that the mean infor-
mation gain of the ETASμðx;yÞ over ETASμ is significantly
larger than 0, thus rejecting the null hypothesis at signifi-
cance levels much smaller than 0.01 in all cases.
Discussion and conclusions.—Our results demonstrate

that, when the spatial variation of background rate is
appropriately accounted for, we get a superior forecast-
ing model and a branching ratio that is much smaller
than 1.
At a fundamental level, the noncritical value of the

branching ratio n invites a reexamination of the physical
picture we have of the brittle rupture process in the Earth’s
crust. Until now, values of n close to unity have been
reported, suggesting that the loaded fault network is in a
permanent critical state, compatible with the popular
concept of self-organized criticality. The much lower value
of n that we estimate using more appropriate assumptions
and a superior algorithm suggests that fault networks
mainly evolve far from a critical point. This has major
implications for the prediction of large events. Indeed, in
the self-organized critical scenario, each event is no differ-
ent from all others from a generating process viewpoint,
making prediction impossible [49]. In contrast, if the fault
network remains most of the time far from criticality, more
sporadic singularities may appear via various possible
mechanisms and announce upcoming catastrophic events.
This suggests, for instance, the need for a reevaluation of
the accelerated moment release hypothesis [11], benefitting
from the prior use of the ETASμðx;yÞ fitting model to better
eliminate the contribution of the uncorrelated part of
seismicity to the total seismicity rate.
Finally, our finding that seismicity operates in a sub-

critical regime should not be confused with the pheno-
menon of subcritical rupture of a single fault [50], where
the stress is below the elastic stress threshold and time-
dependent plastic deformations and microcracking occur
slowly at and around the crash tip and at asperities. The
finite-time singularity ending subcritical crack growth [51]
is a one-rupture problem. In contrast, the criticality (and its
absence) of a large collection of interacting earthquakes is a
many-body problem.
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