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The chemotactic network of Escherichia coli has been studied extensively both biophysically and
information theoretically. Nevertheless, connection between these two aspects is still elusive. In this work,
we report such a connection. We derive an optimal filtering dynamics under the assumption that E. coli’s
sensory system optimally infers the binary information whether it is swimming up or down along an
exponential ligand gradient from noisy sensory signals. Then we show that a standard biochemical model
of the chemotactic network is mathematically equivalent to this information-theoretically optimal
dynamics. Moreover, we demonstrate that an experimentally observed nonlinear response relation can
be reproduced from the optimal dynamics. These results suggest that the biochemical network of E. coli
chemotaxis is designed to optimally extract the binary information along an exponential gradient in a noisy
condition.
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Living things have developed sensory systems to behave
and navigate themselves adaptively in changing and
uncertain environments. One of the most analyzed such
systems is the sensory system of Escherichia coli for
chemotaxis. In E. coli chemotaxis, a cell obtains informa-
tion of a spatial gradient of a ligand from the temporal
change in the ligand concentration that it experiences by
swimming in the gradient. An E. coli cell can sense a
positive change in the ligand concentration when it swims
along the increasing direction of the gradient and vice
versa. The swimming trajectory of E. coli consists of a
series of ballistic swimming called run interrupted with
random reorientations of direction called tumbling. By
inhibiting the frequency of tumbling when it senses a
positive change in an attractant concentration, the E. coli
cell can elongate the run length toward the direction of the
higher concentration.
The mechanism of the sensory system has been inten-

sively studied both experimentally and theoretically.
Experimental studies have revealed the response of E. coli
to various temporal profiles of concentration by measuring
behaviors of motor rotation [1,2] and signaling molecules
[3,4]. Theoretical studies have proposed and analyzed
biochemical models that can reproduce the properties of
experimentally observed responses such as high sensitivity
to weak changes in concentration [4–7] and sensory
adaptation [8]. Based on these works, Tu et al. proposed
a simplified biochemical model [9], which can explain
various aspects of the responses simultaneously [10]. This
standard biochemical model has been widely employed for
various purposes such as analysis of sensory-motor co-
ordination [11], fold-change detection [12,13], and thermo-
dynamics of sensory adaptation [14].

In the biochemical model [9], the sensory system
consists of receptor complexes, each of which takes either
active or inactive state. Active receptors send a signal via
mediator proteins and control the rotation of flagellar
motors. The ratio of active receptors, termed receptor
activity at, is subjected to a feedback regulation through
receptor modification, which is characterized by methyla-
tion level mt. The receptor activity at is determined by the
free-energy difference ft between active and inactive states:

at ¼
1

1þ expðftÞ
: ð1Þ

The free-energy difference ft comprises additive effects of
the methylation level mt and of the ligand concentration
½L�t as

ft ¼ Nð−αmt þ log½L�t þ CÞ; ð2Þ

where N, α > 0, and C are biochemical constants.
Equations (1) and (2) take the form of the Monod-
Wyman-Changeux model describing allostery [15], where
N specifies the receptor cooperativity producing high
sensitivity [4,6,7]. The methylation level mt is modulated
by the receptor activity at as

dmt

dt
¼ FðatÞ; ð3Þ

where F is assumed to be a monotonically decreasing
function. Since dat=dmt > 0 and F0ðatÞ < 0, the dynamics
of the methylation levelmt with the function F constitutes a
negative feedback regulation over the receptor activity at.
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Because of the negative feedback, this biochemical network
displays the sensory adaptation [8]; that is, when the
concentration ½L�t is stationary, the receptor activity con-
verges to a single value ā such that FðāÞ ¼ 0, which is
independent of the stationary ligand concentration.
Although the biochemical model captures integral parts

of the sensory system and its behaviors, there is room for
discussion from the viewpoint of noise tolerance. Because
the sensory system relies on stochastic ligand-receptor
interactions and receptor modifications, the sensing signal
inevitably contains noise. This noise would cause a fatal
influence on the chemotactic performance because it can
bury the actual temporal changes in ligand concentration
and could end up with misdirections of the motor control.
Therefore, the sensory system of E. coli is expected to have
a certain noise-filtering property, and several works have
investigated impacts of noise in information transmission
and favorable traits for noise filtering [16]. However, these
works focused on linear responses by ignoring the under-
lying biochemical network and resultant nonlinear proper-
ties of the E. coli sensory system. Even though some others
considered a possible biochemical implementation of an
ideal noise-immune system based on nonlinear filtering
theory [17], the correspondence with actual biological
systems, especially that of the gradient sensing in chemo-
taxis, is still elusive.
In this Letter, we utilize nonlinear filtering theory to

derive a noise-tolerant gradient sensing dynamics and
consider its biochemical implementation in E. coli ’s cell.
In particular, we find that the derived optimal noise-filtering
system excellently coincides with the biochemical model of
the E. coli sensory system [9] and reproduces a nonlinear
response relation measured experimentally.
As a minimal setting of the temporal gradient sensing, we

consider a run-tumble motion of E. coli on one dimensional
axis along with a monotonically increasing ligand concen-
tration. The gradient sensing in this setting becomes the
problem of determining whether the cell is swimming up or
down the gradient. This assumption is mainly due to the
limited capacity of the cell that may not be able to recognize
the three-dimensional physical space. Let ξt ∈ R and Xt ∈
f−1;þ1g be the location of the cell and the direction of
swimming along the axis at time t ∈ ½0;∞Þ. We assume that
an E. coli cell runs ballistically with a constant speed v > 0
as dξt=dt ¼ vXt and that each run and its direction is
interrupted by a stochastic tumbling motion. By approxi-
mating the tumbling motion as an instantaneous event [18],
we model the random changes in direction Xt due to
tumbling with a continuous-time Markov chain:

dpt
dt

¼
�−r r

r −r

�
pt; ð4Þ

where pt ≔ (PðXt ¼ þ1Þ;PðXt ¼ −1Þ)T , r is the time-
independent transition rate betweenXt ¼ �1, and the initial

condition is set as π ≔ PðX0 ¼ −1Þ. Note that the transition
rate of direction Xt would be smaller than the rate of
tumbling event because each tumbling does not always
lead to the flipping of the direction.
Next, we assume that the ligand concentration depends

exponentially on the location as ½L�t ∝ expðcξtÞ, where
c > 0 is a constant. This assumption is natural because the
spatial distribution of a ligand typically obeys diffusion.
Then, we set an observation process, Yt that defines the
sensing information which can be obtained by the E. coli ’s
system about concentration ½L�t at each time t. By adding a
noise term to the ligand-dependent term in Eq. (2), we set

Yt ≔ − log½L�t −
ffiffiffi
σ

p
Wt; ð5Þ

where Wt is the standard Wiener process and σ is the
intensity of noise. It should be noted that Wt can also be
interpreted approximately as the noise from methylation
[19] because the methylation level mt additively appears in
Eq. (2). See Supplemental Material (SM) [20] for other
possible ways of modeling the ligand profile and noise
property and their consequences, which includes Ref. [21].
By applying the nonlinear filtering theory under the

above settings and assumptions [22], we can derive the
optimal way to infer Xt in the form of the following
stochastic differential equation:

dZt

dt
¼ −RðZt − 1=2Þ þ KZtð1 − ZtÞ∘ dYt

dt
; ð6Þ

where ∘ is the Stratonovich integral and the initial condition
is Z0 ¼ π (see SM for details of derivation [20]). This
equation describes the dynamics of posterior probability
Zt ¼ PðXt ¼ −1jY0∶tÞ of the descending direction given the
time series of the noisy sensingY0∶t ≔ fYt0 jt0 ∈ ½0; t�gwhen
its parameter values match those of tumbling, run, gradient,
and noise as R ¼ ROPT ≔ 2r, K ¼ KOPT ≔ 2vc=σ. The
estimate for the current direction considered here rather
than a future one is appropriate because E. coli continuously
modulates run and tumble that should depend on whether it
is currently swimming up or down the gradient.
Under this set of the optimal parameter values, the first

term represents a model-based prediction, which works as
active forgetting because the current belief should becomes
noninformative gradually due to the stochastic change in
direction Xt [Eq. (4)]. Thereby, without the second term
(sensing signal), Zt converges to the stationary probability
of the direction, 1=2, as t → ∞. The second term corre-
sponds to the update of the posterior by new observation
[Eq. (5)]. Its form and coefficient are determined depending
on the settings of Yt (see SM for detail [20]). The optimal
gain of this term, KOPT, describes the signal-to-noise ratio
(SNR) because σ and 2vc specify the noise intensity and
the steepness of the temporal change in the ligand con-
centration during a run, respectively. When the SNR is
high, using sensing signal with large K is beneficial,
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whereas when the SNR is low, bet hedging according to the
model prediction, Zt ≈ 1=2, with small K becomes ben-
eficial. We call the dynamics of Zt described by Eq. (6) the
filtering dynamics hereafter.
Next, we reveal the relation between the filtering

dynamics and the biochemical network of E. coli chemo-
taxis by demonstrating that Eq. (6) can be equivalent to
Eqs. (1)–(3) if noise is neglected.
To this end, we introduce a coordinate transformation

from the posterior probability Zt to the log-posterior ratio
θt ≔ logð1 − ZtÞ=Zt. From the chain rule for derivatives,
dθt=dt ¼ ðdθt=dZtÞðdZt=dtÞ, we obtain the following
equivalent representation of the filtering dynamics:

dθt
dt

¼ R
Zt − 1=2
Ztð1 − ZtÞ

− K∘ dYt

dt
: ð7Þ

By defining a new variable μt for the prediction dy-
namics as

dμt
dt

≔ −
R
κ

Zt − 1=2
Ztð1 − ZtÞ

; ð8Þ

we can formally integrate Eq. (7) as

θt ¼ −κμt þ K½log½L�t þ
ffiffiffi
σ

p
Wt� þ ϕ; ð9Þ

where we use Eq. (5), ϕ ≔ logfð1 − πÞ=πg − K log½L�0 þ
κμ0 is a constant of integration, and κ > 0 is an arbitrary
constant. Finally, Zt in Eq. (8) can be obtained by the
inverse transformation from θt to Zt:

Zt ¼
1

1þ expðθtÞ
: ð10Þ

These transformations unveil that Eqs. (10), (9), and (8)
for the filtering dynamics are equivalent to Eqs. (1)–(3) for
the biochemical model of E. coli chemotaxis, respectively
(see also Table S1 in SM for comparison [20]). Without
violating this correspondence, a degree of freedom can be
introduced by a constant shift of θt as θ̃t ≔ θt þ θ̄, where
θ̄ ∈ R is the constant. We obtain the following:

Z̃t ≔
1

1þ expðθ̃tÞ
;

θ̃t ¼ θ̄ − κμt þ Kðlog½L�t þ
ffiffiffi
σ

p
WtÞ þ ϕ;

dμt
dt

¼ −
R
κ

�
Z̃t − 1=2

Z̃tð1 − Z̃tÞ
e−θ̄ þ Z̃t

1 − Z̃t
sinhðθ̄Þ

�
ð11Þ

(see SM for information about the class of transformations
of θ with which the correspondence is preserved [20]). Note
that there is a one-to-one correspondence between a skewed
posterior probability Z̃t and Zt. Then, Z̃t corresponds to the
receptor activity at, and they are described by the sigmoidal

function of θ̃t and ft, respectively. The translated log-
posterior ratio θ̃t is determined by the logarithm of the
ligand concentration ½L�t and the prediction term μt, which
corresponds to the dependence of the free-energy differ-
ence ft on the ligand concentration ½L�t and the methylation
level mt in Eq. (2). Finally, the dynamics of prediction term
μt corresponds to that of the methylation levelmt. Note that
such a detailed correspondence with the biophysical quan-
tities has not been derived in previous works based on the
filtering theory [16,23]. In these works, E. coli was
assumed to estimate a continuous variable such as the
direction of gradient, the ligand concentration, or its
temporal change rather than the binary variable Xt in
our work. This fact may suggest that the E. coli ’s system
is adapted to sensing the binary or discrete information
rather than a continuous one.
Because the right-hand side of Eq. (11) is a decreasing

function of Z̃t in the same way as the feedback function
FðatÞ of mt, μt works as a negative feedback component to
Z̃t. Even though FðatÞ in the biochemical model cannot be
determined theoretically but inferred only experimentally,
the filtering dynamics provide a concrete functional form of
the feedback function, FOPTðZ̃tÞ ≔ −ðR=κÞfðZ̃t − 1=2Þ=
fZ̃tð1 − Z̃tÞge−θ̄ þ Z̃t=ð1 − Z̃tÞ sinhðθ̄Þg. Thus, if E. coli
has developed the sensory system being tolerant to sensing
noise near optimally, the feedback function F describing
the methylation dynamics can have a similar form as FOPT.
To test this expectation, we compare the feedback function
Fexpt inferred experimentally by a fluorescence resonance
energy transfer measurement [24] with the theoretically
predicted FOPT by adjusting two free parameters R=κ and θ̄.
Figure 1 shows a notable agreement between the exper-
imental data and theoretical prediction. Both Fexpt and
FOPT share a characteristic nonlinearity: a gentle slope

FIG. 1. Theoretically derived FOPT (red curve) fitted to the
experimentally obtained Fexpt (black points) [24]. FOPT here is
obtained by modulating two parameters, R and θ̄, as R=κ ≈ 2.2 ×
10−3 and 1=f1þ expðθ̄Þg ≈ 0.32 (see also SM for the fitting
procedure [20]).
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around a ¼ 0.5 and a sharp decline near a ¼ 1. From
the viewpoint of biochemical mechanism, the nonlinearity
of Fexpt cannot be reproduced by simple linear or
Michaelis-Menten models [8,11] but by additionally
assuming a nonlinear regulation possibly due to phospho-
rylation of the demethylation enzyme, CheB [24]. This
result implies that the nonlinear E. coli chemotactic
network is designed structurally to be robust to the sensory
noise.
We further investigate whether the biochemical para-

meters observed experimentally in laboratory environments
can satisfy the optimality in terms of filtering.
From the fitting of FOPT to Fexpt, we have R=κ ≈ 2.2×

10−3. κ can be estimated as κ ¼ αN ≈ 12 by comparing
Eqs. (2) and (9) and by employing a previous estimate of α
and N [24]. Thus, R is calculated as R ≈ 2.6 × 10−2. In
contrast, the optimal ROPT can be estimated as 10−0.5 ≤
ROPT ≤ 100 s−1 by using ROPT ¼ 2r and measurements of
tumbling rate [2,25]. Thus, the obtained biochemical
parameter R looks much smaller than the estimate ROPT
from tumbling measurements.
This discrepancy may be attributed to three possibilities.

First, experimental conditions for the measurements of
tumbling rate might not capture a wild condition where E.
coli cells are supposed to perform chemotaxis. Recent studies
suggest that swimming behaviors in polymeric solutions or
soft agar are different from that under a liquid condition used
in most experiments [26]. In particular, the tumbling fre-
quency is shown to decrease with addition of polymeric
molecules due to remodeling of signaling pathway down-
stream of sensory system or possibly due to motor load. In
such a case, ROPT may take smaller value. Second, the values
of R might be underestimated because of the difficulty in
estimating the biochemical parameter N. Although we used
an estimate N ¼ 6 in previous studies [7,9,24], other esti-
mates of N are larger, N ¼ 15–20 [7,27]. Actually, R can be
estimated in another way without using an estimate ofN, and
recent measurements estimate higher values, R ¼ 0.079–
0.11 [28], which is only a several-fold difference from ROPT.
Moreover, the adaptation rate is shown to increase several fold
with 10°C increase of temperature [24,29].
The last possibility is that the system is not or cannot be

always optimized at the level of parameter values, though it
is so at the level of network structure. Besides the
discrepancy between R and ROPT, such possibility should
also be noted between N and KOPT. By considering the
correspondence of N with the gain KOPT, which is
determined by the speed of swimming, the steepness of
gradient, and the intensity of sensing noise, optimal N
should be variable depending on environmental conditions.
Several studies suggested thatN as well as other parameters
are diversified in a population of cells for hedging envi-
ronmental uncertainties [30].
To perform chemotaxis under the limitation in para-

meter adjustment, the robustness against the mismatch of

parameters could be beneficial. We investigate whether such
robustness is endowed or not by examining the filtering
dynamics with misspecified parameter values of K. We
measure the performance of the dynamics using mean square
error (MSE) defined as ½1T

R
T
t¼0fXt − ð1 − 2ZtÞg2dt�1=2, in

which1 − 2Zt ¼ 1–2PðXt < 0jY0∶tÞ ¼ E½XtjY0∶t� holds for
the optimal parameter set.We define a reference value ofK as
Kref ≔ N ¼ 6 according to the correspondence between K
and N. We set the swimming speed to a physiologically
relevant value: v ¼ 20 μms−1. We define the rate of direc-
tional changes as r ¼ 0.1 s−1 and the reference of the
steepness of gradient as cref ≔ 10−3 μm−1 by taking into
account the conditions in previous simulation studies [11].
We set R to the optimal value, ROPT ¼ 2r ¼ 0.2 s−1. As
appropriate data are not available for estimating the intensity
of noise σ, we define the reference of σ as σref ≔ 2crefv=Kref
such that the reference parameterKref becomes optimal under
c ¼ cref andσ ¼ σref [20,31].Note thatKref is also optimal on
the half line, ðσ; cÞ ¼ ηðσref ; crefÞ, η > 0, because 2vc=σ ¼
2vcref=σref ¼ Kref holds on it.
Figure 2 shows MSEs of Eq. (6) for different K as

functions of σ with fixed c ¼ cref [Fig. 2(a)] and as
functions of c with fixed σ ¼ σref [Fig. 2(b)]. The error
with fixed K is always greater than or equal to that with K
adjusted to KOPT. For each fixed gain K, MSE monoton-
ically increases as the SNR decreases either by the increase
in the noise intensity σ [Fig. 2(a)] or by the decrease in the
gradient steepness c [Fig. 2(b)], indicating that a greater
SNR than the optimal one never impairs the performance of
the dynamics for any K. We can see a similar trend in
Figs. 2(c) and 2(d). These results indicate that even under

(a) (b)

(c) (d)

FIG. 2. MSEs of the filtering dynamics as a function of σ with
fixed c ¼ cref (a), as a function of c with fixed σ ¼ σref (b), as a
function of K and c with fixed σ ¼ σref (c), and as a function of σ
and c with fixed K ¼ Kref (d). Curves in (a) and (b) represent
MSEs with fixed parameter K ¼ Kref (blue) and with the optimal
parameter K ¼ KOPT ¼ 2vc=σ (red). White lines in (c) and
(d) represent the parameter region on which the parameter K
is set optimal, i.e., 2vc=σref ¼ K (c) and 2vc=σ ¼ Kref (d).
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the misspecification of K associated with parameters σ and
c, the filtering dynamics still reliably and robustly estimate
temporal gradient if a change in σ or c is one such that it
increases the SNR (see also SM for the robustness against
the discrepancy between R and ROPT [20]).
The results of simulation also suggest how K can be

chosen when the value of KOPT is uncertain. With the
small value of K, variation of MSE between low and high
SNRs is small (Fig. 2). In contrast, large K shows a
significant variation in MSE between low and high SNR
cases. This means that low K can work moderately well
for most conditions, whereas large K can work much
better if the environmental SNR is large enough at the cost
of lower performance under low SNR situations. Thus,
when there is uncertainty about KOPT, K also modulates
the balance of risk-averting and risk-taking strategies of
sensing.
The growth-dependent variability of K can coordinate

such risks at the level of population [32]. Moreover, N,
which biochemically corresponds toK, is suggested to vary
temporally at the single-cell level [27,33] via a receptor
cluster rearrangement. The integration of biochemical
modeling and optimal filtering theory may play a pivotal
role in further analysis of such a gain adaptation and
learning at both single-cell and population levels.
Besides deriving the desirable properties for filtering, our

approach provides a prediction about what type of envi-
ronments the E. coli ’s sensory system may adapt to. In SM,
we additionally show that the filtering dynamics optimized
to an exponential profile can explain an experimental data
of chemotactic trajectories better than that optimized to a
linear gradient [20]. This result may suggest that the E. coli
’s biochemical system is adapted to the exponential
gradient profile. Such prediction may be validated more
definitely by comparing the behavior of the optimal filter-
ing model with the swimming direction and the receptor
activity measured simultaneously under different environ-
mental conditions.
This approach may also be applied to other sensory

systems; allosteric receptors with a negative feedback, e.g.,
G protein-coupled receptors for vision and epidermal
growth factor receptor in animal cells; spatial and temporal
sensing by ameboid cells and worms. By considering the
array of such sensory systems, we may be able to further
validate the power of the optimal filtering approach [23].
Finally, we should mention that our model has not yet

incorporated the potential dependence of the directional
dynamics dpt=dt on sensing history Y0∶t via the signal-
dependent motor regulation. While the dependency can be
ignored when the gradient is weak enough, it can affect the
optimal behaviors, otherwise. Thus, a next crucial chal-
lenge is extending our approach so as to directly incorpo-
rate the closed cycle between sensing and control. Such
extension might fill the remaining gaps between the current
theory and experimental observations.
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