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Protein conformational fluctuations are highly complex and exhibit long-term correlations. Here,
molecular dynamics simulations of small proteins demonstrate that these conformational fluctuations
directly affect the protein’s instantaneous diffusivity DI. We find that the radius of gyration Rg of the
proteins exhibits 1=f fluctuations that are synchronous with the fluctuations of DI . Our analysis
demonstrates the validity of the local Stokes-Einstein–type relation DI ∝ 1=ðRg þ R0Þ, where
R0 ∼ 0.3 nm is assumed to be a hydration layer around the protein. From the analysis of different protein
types with both strong and weak conformational fluctuations, the validity of the Stokes-Einstein–type
relation appears to be a general property.
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Diffusion of colloidal particles in a bulk liquid, known as
Brownian motion, is driven by collisions with the surround-
ing liquid molecules. Its ensemble-averaged mean squared
displacement (MSD) hrðtÞ2i ¼ 2dDt grows linearly with
time, where d is the spatial dimension, rðtÞ is the particle
position, and D is the diffusion coefficient. In a high-
viscous liquid, D of a spherical particle of radius R follows
the classical Stokes-Einstein (SE) relation D ¼ kBT=6πηR,
where η is the viscosity and kBT is the thermal energy. In a
coarse-grained view, the radius R of a diffusing particle is
typically assumed to be constant.
The SE-type relation is also valid for the diffusion of

proteins, D ∝ 1=RH, where RH is the hydrodynamic radius
of a protein. The translational diffusivity of isolated
proteins in solution has been predicted by its size and
shape, e.g., molecular weight [1,2], radius of gyration [2,3],
and interfacial hydration [4]. Additionally, complex
protein-protein interactions are a determinant factor for
protein diffusion in macromolecularly crowded liquids
[5,6]. Interestingly, also two-dimensional lateral diffusion
of transmembrane proteins in protein-crowded membranes
follows a SE-type relation [7], while in protein-poor
membranes the protein diffusivity follows the logarithmic
Saffman-Delbrück law D ∝ lnð1=RÞ [8].
Recently, spatial and temporal fluctuations of the local

diffusivity of tracer particles have been reported in hetero-
geneous media, such as supercooled liquids [9], soft
materials [10,11], and biological systems [12–20]. The
measured tracer dynamics exhibits a non-Gaussian
distribution of displacements, anomalous diffusion with
a nonlinear t dependence of the MSD, and dynamical
heterogeneity. Specifically, the local diffusivity fluctuates

significantly with time due to the influence of heterogeneity
in the media, e.g., clustering, intermittent confinement,
structure variation, etc. Numerous theoretical fluctuating-
diffusivity models explain specific features of the non-
Gaussianity and anomalous diffusion [21–34].
Interestingly, a fluctuating diffusivity was observed for

polymer models in dilute solutions [35]. However, the
precise influence of the temporal change of the observed
particle itself on the diffusivity fluctuations remains
unclear. Protein molecules represent a uniquely suited
system to explore the direct connection between instanta-
neous conformation and diffusivity. Namely, incessant
protein conformational fluctuations range from small local
conformational changes to large and even global changes in
domain motion and in the folding and unfolding dynamics.
Since instantaneous conformations are expected to affect
the instantaneous diffusivity of the proteins, conforma-
tional fluctuations may induce a fluctuating diffusivity of
proteins. If true, it is an interesting question to unveil
whether a SE-type relation holds between the locally
fluctuating diffusivity and the protein conformations while
the classical SE relation is established only for a static
tracer particle.
Here, we report results from extensive all-atom molecu-

lar dynamics (MD) simulations of small proteins isolated in
solution to elucidate the effect of protein conformational
fluctuation on the protein diffusivity. Specifically, we show
that the temporal fluctuations of the instantaneous protein
diffusivity DI directly depends on the instantaneous radius
of gyration Rg by the SE-type relation DI ∝ 1=ðRg þ R0Þ,
where R0 ∼ 0.3 nm is assumed to be a hydration layer
around the protein.
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Conformational fluctuations of Chignolin.—Five
independent simulation runs of the protein super
Chignolin [36] were run for 40 μs (see details in
Supplemental Material [37]). To evaluate the conforma-
tional fluctuations of Chignolin, the radius of gyration,
R2
g ¼ N−1PN

i¼1 ðri − rgÞ2, was calculated, where N is the
number of amino acid residues, and ri and rg are the entire
center of mass positions of the ith residue and the protein,
respectively. A time series of Rg is shown in Fig. 1(a). The
lower values of Rg correspond to the folded conformations,
while the higher value corresponds to the unfolded con-
formations. The probability density function of Rg shows
two peaks at 0.51 and 0.55 nm, which correspond to the
native state and metastable (misfolded) state, respectively
[see Fig. 1(b)]. Several metastable structures were observed
in this simulation of super Chignolin at room tempera-
ture (Fig. 2).

Fluctuations of the protein conformations are known to
show long-term correlations [51–54]. Chignolin undergoes
a folding and unfolding transition on a timescale of
microseconds. To elucidate the correlations of the con-
formational fluctuations, the ensemble-averaged power
spectral density (PSD) of Rg was calculated [Fig. 1(c)
and Fig. S1 [37] ]. The PSD exhibits 1=f noise with a
power-law exponent of −1.5 at high frequencies and −1.1
at low frequencies, the transition frequency is 2 × 108 Hz.
Below a frequency of ∼106 Hz, the PSD assumes a plateau,
which implies stationarity of the process. The 1=f behavior
of the PSD is observed for other small proteins, such as
Villin and WW domain of Pin1, whose sizes are about 3
times larger than Chignolin, with different power-law
exponent (Fig. S2).
The observed PSD transition frequencies correspond to

the timescale of conformational protein fluctuations.
Indeed the time-averaged mean squared end-to-end
distance δl2 of Chignolin exhibits a sublinear increase
with two transition points at ∼1 ns and ∼1 μs [see
Fig. 1(d), details in Supplemental Material [37] ]. These
transition times are of the same order as those of the PSD of
Rg. The PSDs of the end-to-end distance for different
measurement times clearly shows 1=f noise similar to that
of Rg [Fig. 1(e)]. The consistency of the PSDs for different
measurement times implies absence of aging [55–57] (see
also Fig. S3). For Chignolin, we clearly see the relaxation
of the conformational fluctuations (plateau in the PSD).
To dissect the dynamical modes of the protein, a

relaxation mode analysis (RMA) [58–61] was performed
(see Fig. 2 and Figs. S4–S8). The free energy maps of
relaxation modes (RMs) clearly identify the native state,
metastable state, and other states, including unfolded
conformations. The slowest mode (mode 1) corresponds
to a transition between the native and metastable states. The
transition between the native and intermediate states are
extracted to the second slowest mode (mode 2). To reveal
the origin of the transitions in the PSD of Rg, cumulative
PSDs summed over 24 individual PSDs of each RM are
shown in Fig. 2(b). The cumulative PSD of RMs shows a
similar decay as the PSD of Rg. Note that the power-law
scaling exponent of the cumulative PSDs converges from
−2 to −1.1 (see Fig. S7). This is because the individual
PSDs of each RM are expected to exhibit a Brownian noise
(∝ 1=f2) due to its exponential relaxation, and the cross-
over frequency, at which the PSD assumes a plateau,
corresponds to the relaxation time of its exponential
relaxation (Figs. S4 and S5). Interestingly, while the
cumulative PSD using only the Cα atoms does not show
the crossover of the power-law exponents between −1.1
and −1.5 at the transition frequency of 2 × 108 Hz, the
cumulative PSD using all heavy atoms does show the
crossover; i.e., the crossover at high frequencies originates
from the conformational relaxation of side chains. In
addition, the slowest RM of the crossover between the
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FIG. 1. Conformational fluctuations of Chignolin at 310 K and
0.1 MPa. (a) Time series of the gyration radius Rg. Thin and thick
lines represent the unsmoothed original values every 1 ns and a
smoothed moving average with 100 ns averaging window,
respectively. (b) Probability density function of Rg. (c) Ensem-
ble-averaged PSD of Rg averaged over five trajectories of 40 μs.
Solid lines are shown for reference. (d) Ensemble- and
time-averaged mean squared protein end-to-end distance for
measurement time t ¼ 40 μs. (e) Ensemble-averaged PSDs of
the end-to-end distance. Different colored symbols represent the
PSDs for different measurement times.
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native and metastable states is related to the crossover
frequency where the PSD of Rg assumes a plateau.
Fluctuating diffusivity of Chignolin.—To evaluate the

diffusive dynamics of Chignolin in solution, we calculated
the time-averaged MSDs,

δr2ðΔ; tÞ ¼ 1

t − Δ

Z
t−Δ

0

δr2ðΔ; t0Þdt0; ð1Þ

where Δ is a lag time, t is the measurement time, and
δrðΔ; t0Þ ¼ rðt0 þ ΔÞ − rðt0Þ is the displacement vector of
the center of mass position of the protein. Some scatter was
observed where Δ becomes comparable to t (Fig. S9). To
examine the fluctuations of the diffusivity, we calculated
the magnitude and orientation correlation functions of the
diffusivity [35,37]. The magnitude correlation is defined by

Φ1ðΔ; tÞ ¼ hjδr2ðΔ; tÞj2i − hδr2ðΔ; tÞi2; ð2Þ

and the dimensionless form Φ̂1ðΔ; tÞ yields from division
by hδr2ðΔ; tÞi2. Φ̂1ðΔ; tÞ is equivalent to the ergodicity
breaking parameter [23,25,62]. In the case of ergodic
diffusion, e.g., Brownian motion, this parameter converges
to zero with a power-law decay ∝ t−1. However, in the case
of nonergodic diffusion [63], e.g., continuous-time random
walks [62,64,65] and annealed transit time models [66], the
magnitude correlation converges to a nonzero value for all
Δ ≪ t as t → ∞. The magnitude correlation function
Φ̂1ðΔ; tÞ of Chignolin shows a slow decay with scaling
exponent below −1, in the time region t ∼ 10−2–1 μs
[Fig. 3(a)]. This implies that the instantaneous diffusivity
may fluctuate intrinsically on the corresponding timescales.
Note that the power-law decay of −1 at shorter and longer
timescales means that the effect of fluctuating diffusivity
can be ignored on these timescales. The orientation
correlation is defined by

Φ2ðΔ; tÞ ¼ hδrδrðΔ; tÞ∶δrδrðΔ; tÞi
−hδrδrðΔ; tÞi∶hδrδrðΔ; tÞi; ð3Þ

where δrδrðΔ; tÞ is a time-averaged MSD tensor [37], a
double dot : is defined by A:B ¼ P

ij AijBij, and the
dimensionless form Φ̂2ðΔ; tÞ yields from division by
hδrδrðΔ; tÞi:hδrδrðΔ; tÞi. Φ̂2ðΔ; tÞ also shows a slow decay
in the time region t ∼ 10−1–1 μs, i.e., orientational diffu-
sion of the protein fluctuates intrinsically.

10-4

10-3

10-2

10-1

1

10

102

103

104

105 106 107 108 109

S
pe

ct
ra

l D
en

si
ty

Frequency [Hz]

Cα (RMA5)
Cα (RMA0)

Heavy atom (RMA0)
Heavy atom (PCA)

Rg

~f -1.1

~f -1.5i ii

iii

iv

v vii

vi

i) ii) iii) iv)

v) vi)

0

4

14
12
10
8
6

2

vii)

(a) (b)

FIG. 2. Decomposition of the relaxation modes of Chignolin at 310 K and 0.1 MPa. (a) Free energy map for the slowest relaxation
mode (mode 1) vs the second slowest mode (mode 2) obtained by RMA using the coordinates of Cα atoms with parameters t0 ¼ 0.5 and
τ ¼ 0.1 ns. Snapshots of protein conformations corresponding to the free energy maps: (i) native state, (ii) metastable state, and (iii)–
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components. RMA and principal component analysis (PCA) were performed using coordinates of heavy atoms or Cα atoms. Parameters
for RMA were set as RMA0 (t0 ¼ 0 and τ ¼ 0.1 ns) and RMA5 (t0 ¼ 0.5 and τ ¼ 0.1 ns).
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FIG. 3. Fluctuating diffusivity of Chignolin at 310 K and
0.1 MPa. (a) Normalized magnitude Φ̂1ðΔ; tÞ and orientation
Φ̂2ðΔ; tÞ correlation functions. Forty-five divided trajectories
were used with a lag time Δ ¼ 50 ps. (b) Correlation between
the mean Rg and the instantaneous diffusion coefficient DI in
each diffusive state. (c) Time series of Rg and temporal diffusion
coefficient (TDC). Thin lines represent unsmoothed original
values every 10 ns. Thick lines represent mean Rg and DI in
each state, where t ¼ 100 ns and Δ ¼ 10 ps were used to obtain
the TDC.
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Both correlators Φ1ðΔ; tÞ and Φ2ðΔ; tÞ of Chignolin
show a crossover at time τc ∼ 1 μs, corresponding to the
lower crossover frequency in the PSD of Rg (∼106 Hz).
Interestingly, the decays of Φ1ðΔ; tÞ and Φ2ðΔ; tÞ are
similar to those of the flexible polymer model in dilute
solutions, the Zimm model [35], incorporating hydrody-
namic interactions between monomers (beads) of the
polymer [67,68]. In the Zimm model, the correlation
function h1=½RgðtÞRgð0Þ�i determines the magnitude of
the diffusivity fluctuations [35], and the relaxation time
is proportional to the solvent viscosity. Note that water
molecules around biomolecules are known to exhibit
subdiffusion [69–71]. Thus, the hydrodynamics interaction
within the protein could be more complicated than that of
the Zimm model.
To see a direct evidence that the instantaneous diffusivity

intrinsically fluctuates with time, we obtained the TDC at
time t�,

Dðt�Þ ¼ 1

2dΔðt − ΔÞ
Z

t�þt−Δ

t�
½rðt0 þ ΔÞ − rðt0Þ�2dt0: ð4Þ

From the TDC, the transition times of the instantaneous
diffusivity DI were estimated with a statistical test [37,72]
(Fig. S10). Note that DI is assumed to be constant between
the transition times. The time series of DI and mean Rg in
each diffusive state fluctuate synchronously. In particular,
DI decreases when the mean Rg increases [Fig. 3(c)].
A clear relationDI ∝ 1=ðRg þ R0Þ can be seen in Fig. 3(b).
Here, we assume the hydrodynamics radius of the protein is
RH ¼ Rg þ R0 with R0 ¼ 0.3 nm, where we interpret R0 as

the hydration layer around the protein. Note that polymers
in the Zimm model with longer chains, which form
approximately spherical coils with a radius Rg,
follow the SE-type relation D ∝ 1=Rg, i.e., our form when
Rg ≫ R0 [35,73].
The universal nature of the relation between DI and Rg

is underlined by MD simulations of Chignolin under two
different temperature and pressure conditions (Fig. 4).
At 280 K and 0.1 MPa, where the protein conformation
changes little, Rg shows small fluctuations around
Rg ¼ 0.51–0.52 nm, but still Rg exhibits 1=f noise
(Fig. S10), and the crossover frequency ∼106 Hz corre-
sponds to the crossover time ∼1 μs of Φ̂1ðΔ; tÞ. At 400 K
and 400 MPa, where the protein exhibits frequent folding
and unfolding, Rg shows significant fluctuations on a range
of 0.5–1 nm. Now, the crossover time of Φ̂1ðΔ; tÞ is shorter,
∼0.2 μs, which is related to the crossover frequency of the
PSD of Rg at 5 × 106 Hz (Fig. S11). Notably, at both
conditions, the relation DI ∝ 1=ðRg þ R0Þ was observed
with R0 ¼ 0.2 nm (280 K, 0.1 MPa) and R0 ¼ 0.3 nm
(400 K, 400 MPa).
Conclusion.—Our study reveals a direct relation between

the size fluctuations of proteins, encoded by the time
dependence of the gyration radius Rg, and their instanta-
neous diffusivity DI. Specifically, we uncovered the uni-
versal relationship DI ∝ 1=ðRg þ R0Þ, representing a time-
local SE-type relation. We also demonstrated that the
relaxation of the Rg dynamics is directly related to the
conformational transitions in the protein energy landscape.
Both features were studied for the protein Chignolin at
different temperature and pressure conditions, as well as for
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Villin and the WW domain of Pin1 (see Fig. S12). In
particular, this analysis showed that the SE-type relation
holds for both proteins with large and negligible Rg
fluctuations. Note that the prefactors of the scaling
DI ¼ A=ðRg þ R0Þ for all proteins investigated here are
the same order of magnitude of kBT=6πη, and DI is
proportional to T=η (Fig. S13). The relatively small
proteins analyzed here exhibit a crossover to stationary
dynamics. We speculate that the instantaneous relationship
DI ∝ 1=ðRg þ R0Þ will also hold for larger proteins with
more complex dynamics [74] (see also Fig. S14) and
pronounced aging behavior [71], but this remains to be
shown in supercomputing studies. Such a universal relation
would be particularly interesting, as it shows that DI for
even highly unspherical proteins can be sufficiently char-
acterized simply by Rg.
Our results provide a microscopic physical rationale for

randomly fluctuating diffusivities as encoded in a range of
recent modeling approaches. While here we focused on the
internal protein dynamics, we speculate that the same SE-
type relation will hold for proteins and other tracers moving
in complex environments such as biological cells. There, on
top of potential interactions with the cytoskeleton, tracers
are typically not fully inert and may thus accumulate
foreign molecules on their surface, leading to time-random
instantaneous Rg and thus DI [75]. Moreover, ongoing
multimerization typical for many regulatory proteins may
further randomize the tracers’ DI [31]. This also prompts
the question of whether similar Rg-DI relations will hold
for tracers showing anomalous diffusion [75].
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