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Although rare, spontaneous breakdown of inversion symmetry sometimes occurs in a material which is
metallic: these are commonly known as polar metals or ferroelectric metals. Their polarization, however, is
difficult to switch via an electric field, which limits the experimental control over band topology. Here we
investigate, via first-principles theory, flexoelectricity as a possible way around this obstacle with the well-
known polar metal LiOsO3. The flexocoupling coefficients are computed for this metal with high accuracy
with an approach based on real-space sums of the interatomic force constants. A Landau-Ginzburg-
Devonshire-type first-principles Hamiltonian is built and a critical bending radius to switch the material is
estimated, whose order of magnitude is comparable to that of BaTiO3.
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The so-called polar or ferroelectric metals [1], first
proposed by Anderson more than half a century ago in
the context of martensitic transformations [2], have been
attracting increasing attention recently. Their interest lies
on the unusual physics that may emerge from the coexist-
ence of metallicity and polarity, two properties that were
initially regarded as contraindicated. For instance, they
provide excellent opportunities to study exotic quantum
phenomena, like noncentrosymmetric superconductivity
[3,4] or spin-polarized currents [5].
The prototypical (and historically the first experimen-

tally known) material realization is lithium osmate, which
undergoes a ferroelectriclike transition at 140 K from the
centrosymmetric R3̄c to the noncentrosymmetric R3c
space group [6]. Since its discovery, the list of known
polar metals has been steadily growing [7]. A range of
materials-design strategies were successfully demonstrated,
including crystal chemistry [8], couplings to antiferrodis-
tortive oxygen tilts [1], interface [1,9] or superlattice
[10,11] geometries, or high-throughput computational
searches [12]. Progress in characterization techniques has
been considerable, too [13].
A long-standing issue for both fundamental research and

potential applications (e.g., in nanoscale electronic and
thermoelectric devices [14]) concerns the ability to control
polarity via an appropriate external field. Because of the
presence of free carriers in the bulk, the most obvious
means of switching polarity in ferroelectrics, i.e., an
applied electric field, is apparently ruled out. Indeed, while
electrical switching of thin two-dimensional [15] metals
has been demonstrated, a general method for reversing
polarity at the bulk level is still missing. Our goal is to
demonstrate that flexoelectricity can solve this issue.
Flexoelectricity describes the coupling between a strain

gradient and the macroscopic polarization and, unlike its

homogeneous counterpart (piezoelectricity), it does not
require any particular space group to be present [16–18].
While flexoelectricity is hardly a new discovery [19], its
practical relevance was demonstrated only recently, thus
reviving this field from both the experimental [20–22] and
theoretical [23] points of view. Of course, the electrical
polarization can only be defined in insulating crystals [24],
so the macroscopic flexoelectric coefficient of a polar metal
vanishes identically. However, as we shall demonstrate
shortly, the flexocoupling between polar lattice modes and
a strain gradient does exist even in metals. Since elastic
fields, unlike electric fields, are not screened by free
carriers, this constitutes, in principle, a viable means of
controlling polarity. Still, whether or not the relevant
couplings are strong enough for such a mechanism to be
experimentally accessible is currently unknown. First-prin-
ciples calculations could be very helpful in this context, and
indeed electronic-structure methods to study flexoelectricity
have seen impressive progress in recent years [23,25–29].
However, the code implementation [23,30] of these tech-
niques is currently limited to insulators; their generalization
to metals, while in principle possible, would require sub-
stantial analytical derivations and programming, which we
regard as unpractical for the scope of the present work.
Here we overcome such limitations by developing an

alternative method to calculate flexocoupling coefficients
in metals, which is based on real-space sums of the
interatomic force constants (IFCs). We demonstrate our
computational strategy by calculating the flexocoupling
coefficients of LiOsO3 as a test case. We use the afore-
mentioned values, in combination with a first-principles-
based effective Hamiltonian that we have constructed by
expanding the energy around the centrosymmetric cubic
phase, to estimate the critical bending radius Rcrit of
LiOsO3. For comparison purposes, we perform an
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analogous study on BaTiO3, probably one of the most
studied ferroelectric compounds. We find a comparable
value of Rcrit for both materials. Since flexoelectric switch-
ing of the polar domains has been experimentally demon-
strated [22] in BaTiO3 already, this result indicates that
mechanical switching of LiOsO3 mediated by flexoelec-
tricity should be well within experimental reach.
To start with, we consider a setup as illustrated in Fig. 1,

i.e., of a LiOsO3 (or n-doped BaTiO3) sample that is cut
along some crystallographic direction q̂ and mechanically
bent via some external load. Within the interior of the film,
the polar order parameter is assumed to be homogeneous,
and its amplitude is described by some three-dimensional
vector u with the physical dimension of length. In the
following we quantify the coercive bending radius, i.e., the
radius of curvature that needs to be applied in order to
switch the polar order parameter between two neighboring
local minima, which are degenerate at mechanical equi-
librium. We shall calculate the critical radius via the
following formula,

Rcrit ¼
feff
Fcoerc

; ð1Þ

where feff is the effective flexocoupling coefficient asso-
ciated with the flexural deformation and Fcoerc is the
minimal generalized force that is required for the mode
u to cross the energy barrier between two minima. Thus,
the problem can be divided into two separate tasks:
(i) determining the coupling between a flexural deforma-
tion and the polar mode, described by feff, as a function of

the crystallographic orientation, and (ii) identifying the
most likely switching paths and the corresponding
energetics.
From now on, we shall assume a Landau-like expansion

of the energy around the high-symmetry cubic structure as
a function of the relevant parameters, following the
established common practice in theoretical studies of
perovskite ferroelectrics. In this context, task (ii) entails
no conceptual difficulties, as it consists in mapping the
potential energy surface of the crystal as a function of the
relevant lattice degrees of freedom—such a procedure has
been successfully carried out for a wide range of materials
already [31,32]. The main technical obstacle resides in (i),
since no established methods exist for the calculation of feff
in metals. Given the novelty, we focus on this point in the
following. (Further details can be found in Ref. [33], Sec. V.)
In full generality, the flexocoupling tensor in a “soft-

mode” material can be defined as follows [25,27],

fαλ;βγ ¼ hPαjCβγ;λi; ð2Þ

where jCβγ;λi describes the forces induced on individual
atoms by a gradient along the Cartesian direction rλ of the
symmetric strain tensor εβγ (“type-II” representation of the
strain gradient [25]), while jPαi represents the (normalized)
atomic distortion pattern associated with the ferroelectric
mode. (Bras and kets are real vectors of dimension 3N,
where N is the number of basis atoms; their scalar product
stands for a sum over sublattices and Cartesian directions.)
The main technical challenge from a computational point of
view consists in calculating the flexoelectric force-response
tensor jCi. Very recent developments [23,30] in linear-
response theory allow us, in principle, to access this quantity
via a long-wave expansion of the dynamicalmatrix to second
order in the wave vector q. Such methodology, however, has
not been generalized to metals yet.
To circumvent this obstacle, we use an alternative

definition of jCi that is based on the real-space moments
of the interatomic force constants [16,25]. The latter are
defined as the second derivative of the total energy with
respect to atomic displacements:

Φl
κα;κ0β ¼

∂2E
∂u0κα∂ulκ0β

: ð3Þ

Then, we can write the flexoelectric force-response tensor
as [25]

jCβγ;λi ¼ jTβ;γλi þ jTγ;λβi − jTλ;βγi; ð4Þ

hκαjTβ;γλi ¼ −
1

2

X

lκ0
Φl

κα;κ0βðdl
κκ0 Þγðdl

κκ0 Þλ: ð5Þ

Here dl
κκ0 ¼ Rl þ τκ0 − τκ, where Rl is the Bravais lattice

vector of the lth cell and τκ is the position of atom κ within

FIG. 1. A bending-type strain gradient is applied to a macro-
scopic crystal along the direction q̂. The external strain gradient
couples to the polar modes resulting in a displacement of the
atoms and, as a consequence, the structure evolves to another
symmetrically equivalent ferroelectric state.
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the unit cell l ¼ 0; jκαi is a normalized projector on a given
sublattice κ and displacement direction α. Thus, hκαjTβ;γλi
describes the α component of the atomic force produced on
atom κ by the second gradient of the displacement field.
The latter is commonly referred to as “type-I” representa-
tion of the strain-gradient tensor [25]; Eq. (4) converts then
jTi into its type-II counterpart jCi.
The lattice sums in Eq. (5) require a sufficiently fast

decay of the IFCs as a function of jdl
κκ0 j to be well defined.

This condition is clearly violated in insulators, where the
long-ranged nature of the electrostatic forces makes the
sums only conditionally convergent [37]. In metals, Kohn
anomalies may produce potentially problematic long-
ranged forces as well; however, the assumption of a finite
electronic temperature guarantees in practice that the IFCs
are short-ranged. This means that the lattice sums of Eq. (5)
will eventually converge to the correct physical value when
a dense enough q-point mesh is used to calculate the real-
space force constants of Eq. (3). This also implies that,
unlike in insulators, the flexocoupling tensor in metals is a
well-defined bulk property, and it is not altered by
boundary effects, such as surface piezoelectricity [38–
40]. Interestingly, the flexoelectric force-response tensor
is directly related (in a crystal that is free of stresses) to the
elastic tensor components via [41]

Cαλ;βγ ¼
1

Ω

X

κ

hκαjCβγ;λi; ð6Þ

where Ω is the volume of the unit cell. This is a useful
consistency check: one can then compare the results with a
more conventional calculation of the elastic tensor [42] to
gauge the reliability of the flexocoupling coefficients as
determined via Eq. (2). Note that the elastic tensor
components are themselves a crucial ingredient for calcu-
lating the effective flexocoupling of Eq. (1) starting from
the flexocoupling tensor f; therefore, it is important to
ensure that the two physical quantities are calculated with
consistent accuracy.
Our first-principles calculations are performed with the

open-source ABINIT [43,44] package. (Details of the com-
putational parameters are provided in Ref. [33], Sec. I.)
Numerical results for both BaTiO3 and LiOsO3 are shown
in Table I. Clearly, the largest flexocouplings are f12 in
LiOsO3 and f11 for BaTiO3. (The latter material behaves
very similarly to SrTiO3 [27], which is natural to expect
given the affinities in the electronic and atomic structure.)
Their absolute values are similar overall, which provides a
first indication that the flexocoupling is comparably strong
in these two materials. Note that the discrepancy in the
elastic constants calculated via the two different methods is
less than 1% for the three independent components of
LiOsO3, which confirms the excellent quality of the
calculations. We also show in Fig. S4 (and Table S4) the
convergence of the numerical results for both the elastic

and flexocoupling constants as a function of the q-point
mesh, further corroborating this point (see Sec. IV
of Ref. [33]).
To make further progress, we use the values in Table I to

compute the effective flexocoupling coefficients for three
representative orientations of the sample ([100], [110], and
[111]), either in the beam-bending or the plate-bending
limit. (We focus on the beam-bending limit following the
definitions of Ref. [45]; explicit formulas are reported in
Ref. [33], Sec. IV.) The results, shown in Table II, indicate
that [100] is by far the bending direction that produces the
largest flexocoupling in LiOsO3. The situation in BaTiO3

seems to be more balanced overall, with a slight preference
for [110] and [111] directions over [100]. Note, however,
that for each surface orientation q̂, the effective flexocou-
pling describes the flexoinduced force acting on the polar
mode along q̂. Depending on the switching path, such force
might not be parallel to the direction along which the polar
mode evolves during switching ŝ; in such cases the
effective flexocoupling needs to be scaled by the projection
q̂ · ŝ. Since the relevant paths in BaTiO3 (see next para-
graph) involve [100]-oriented switching, such geometrical
factor reduces the [110] and [111] coefficients by

ffiffiffi
2

p
andffiffiffi

3
p

, respectively, bringing all three values of feff to a
similar magnitude.
Having calculated the values of feff , we now need the

informationabout the switchingpath to obtainRcrit according
to Eq. (1). To this end, we construct a Landau-Ginzburg-
Devonshire-type first-principles Hamiltonian by expanding
the energy around the reference cubic phase of Pm3̄m
symmetry. The Hamiltonian includes the most important
degrees of freedom of the structure: the strain sij, the tilts of
the oxygen octahedra qi, where qi represents the displace-
ments of the oxygen atoms perpendicular to the rotation axis

TABLE I. Independent components of the calculated elastic (in
GPa) and flexocoupling (in eV) tensor. “Lattice sums” refers to
Eq. (4,5); “DFPT” to the method of Ref. [42]. The n-type
flexocoupling coefficients [27] of BaTiO3 are shown.

C11 C12 C44 f11 f12 f44

LiOsO3
Lattice sums 364.7 129.5 44.3−13.8 49.3 3.3
DFPT 365.6 129.5 44.1 � � � � � � � � �

BaTiO3
Lattice sums 346.1 121.7 134.5−53.5 3.4−39.5
DFPT 353.3 121.7 137.7 � � � � � � � � �

TABLE II. Effective flexocoupling coefficients (absolute values
in eV units) for (100)-, (110)-, and (111)-oriented samples in the
beam-bending limit.

f100eff f110eff f111eff

LiOsO3 40.1 5.3 2.5
BaTiO3 16.2 24.7 23.3
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and the polarmodes ui. (Details on themodel can be found in
Ref. [33], Secs. II and III.) First, we validate our effective
HamiltonianHeff by calculating the energetics of the relevant
phases (Table S2) and their variation as a function of external
pressure (Fig. S2); in both cases we obtain excellent agree-
ment to the first-principles results. Next, we proceed to
calculate the most favorable switching paths by constraining
one component of the polar vector [46–48] and numerically
minimizing (simulated annealing) the energy functional with
respect to the other parameters.
The resulting double-well potential curves of LiOsO3

and BaTiO3 are shown in Fig. 2. Before commenting on the
results, it is useful to recall the structural properties of each
of the two materials. The structural ground state of LiOsO3

has R3c symmetry, containing both polar distortions and
antiphase octahedral tilts (a−a−a− in Glazer notation)
oriented along the [111] pseudocubic direction. Since the

energy scale associated to the antiferrodistortive (AFD) tilts
is an order of magnitude larger than that associated tou, they
are unlikely to be affected by a weak elastic field; in practice,
u can only switch between the [111] and ½1̄ 1̄ 1̄� states.
Regarding the actual switching path, two scenarios are in
principle possible. If the nonpolar R3̄c structure were stable
under the constraintu1 ¼ 0, the polarmodeswould be forced
to evolve along the same pseudocubic [111] direction even
under the action of a [100]-oriented external force. However,
previous first-principles calculations have shown [49] that
theR3̄c phase hasmore than one imaginarymode atΓ, which
means that R3̄c is unlikely to be the saddle point. This
suspicion is nicely confirmed by the results of our effective
Hamiltonian: indeed, the “butterfly diagram”of Fig. 2 clearly
reflects the presence of a switchable in-plane polarization at
u1 ¼ 0; the resulting coercive field is Fcoerc ¼ 0.34 eV=Å.
(The evolution of u2;3 as a function of u1 is shown in Fig. S1
of Ref. [33].) To quantify how much the system gains by
circumnavigating the energy barrier, we attempted the same
computational experiment while imposing u1 ¼ u2 ¼ u3
along the path; as expected, we obtain a substantially larger
critical field of Fcoerc ¼ 0.69 eV=Å, assuming that the field
is still applied along [100].
For BaTiO3 the polarization cannot be constrained by the

tilts, since the latter are absent in this material. At low-
temperature BaTiO3 has R3m symmetry, and we find that
the lowest switching barrier occurs when the polarization
continuously rotates from [111] to [1̄11] by passing
through an orthorhombic [110] saddle point. (The path
is roughly oriented along [100]). We find a critical coercive
field of Fcoerc ¼ 0.14 eV=Å for such a switching path. For
comparison to room-temperature experiments, where
BaTiO3 adopts a tetragonal structure, we also calculate
the hypothetical barrier that one would obtain by con-
straining Pk½100� (i.e., by setting the in-plane components
of P to zero). We find Fcoerc ¼ 0.29 eV=Å. This is a
substantially larger value than the aforementioned thresh-
old for polarization rotation, in line with literature results.
We are now ready to answer the main physical question

we asked ourselves at the beginning: how much do we need
to bend a LiOsO3 sample to reverse its polar lattice
distortion? By means of Eq. (1) we can compute the
critical bending radius for both materials. The obtained
values are Rcrit ∼ 118 Å for LiOsO3 and Rcrit ∼ 125 Å for
rhombohedral BaTiO3 and Rcrit ∼ 60 Å for tetragonal
BaTiO3. Remarkably, the calculated critical bending radius
of LiOsO3 is twice as large as that of tetragonal BaTiO3,
essentially matching the calculated value of rhombohedral
BaTiO3. Since mechanical switching of polar domains in
tetragonal barium titanate has already been experimentally
achieved [22,50] via strain gradients, our results indicate
that this is very likely to be feasible in LiOsO3 as well.
Our results for BaTiO3 are in good agreement with the

ones reported in Ref. [51] where a critical bending radius of

(a)

(b)

FIG. 2. Potential energy landscape for LiOsO3 (a) and BaTiO3

(b) from our first-principles effective Hamiltonians, obtained by
minimizing the energy at fixed u1. For LiOsO3, a double-well-
like curve is obtained when u1 ¼ u2 ¼ u3 is enforced (dashed
line) and a butterflylike diagram is obtained when all the
parameters are allowed to evolve freely (solid line, colors, and
arrows are used to illustrate the switching path). For BaTiO3, the
dashed line represents the study under the u2 ¼ u3 ¼ 0 con-
straint, and the solid line the case with no constraints.
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110 Å was estimated. This is substantially smaller than the
available experimental estimates (a value of Rcrit ∼ 300 Å
was observed in BaTiO3 [50]). This is expected: theoretical
estimations of coercive fields in ferroelectrics that are based
on the homogeneous Landau potential are typically over-
estimated by 1 or 2 orders of magnitude [52]. Consideration
of more realistic mechanisms (e.g., domain wall nucleation
and motion) would drastically complicate our study, and
bring us far from our main scope. We stress in any case that
our underestimation of the critical bending radii compared
to experiments should be ascribed to an overestimation of
Fcrit, while we regard our calculation of the flexocouplings
as accurate. (The contribution of the oxygen octahedral tilt
gradients to the flexocoupling in lithium osmate was
neglected in this work. While certainly present, we consider
it unlikely to qualitatively affect our conclusions.)
As an outlook, we hope that the results presented here

will stimulate further experimental work to verify our
predictions. Also, it will be interesting to estimate the
magnitude of the flexocouplings in a broader range of polar
metals and identify candidates where the effect is especially
strong. Finally, from the point of view of the theory,
developing the methodological tools to assess the impact
of tilt gradients on the calculated coefficients is another
topic that we regard as promising for future studies.
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