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Motivated by the recent development of time-resolved resonant-inelastic x-ray scattering (TRRIXS) in
photoexcited antiferromagnetic Mott insulators, we numerically investigate momentum-dependent
transient spin dynamics in a half-filled Hubbard model on a square lattice. After turning off a pumping
photon pulse, the intensity of a dynamical spin structure factor temporally oscillates with frequencies
determined by the energy of two magnons in the antiferromagnetic Mott insulator. We find an antiphase
behavior in the oscillations between two orthogonal momentum directions, parallel and perpendicular to
the electric field of a pump pulse. The phase difference comes from the B1g channel of the two-magnon
excitation. Observing the antiphase oscillations will be a big challenge for TRRIXS experiments when their
time resolution will be improved by more than an order of magnitude.
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Ultrafast optical pulses are now a common tool for
investigating novel nonequilibrium phenomena in strongly
correlated electron systems. One of the typical methods
is a pump-probe optical technique, which has widely been
applied to various strongly correlated materials [1,2].
The pump-probe technique can detect two-particle excita-
tion but cannot see momentum-dependent collective exci-
tation due to negligibly small momentum transfer of probe
photons. On the other hand, time- and angle-resolved
photoemission technique [3–5] can probe momentum-
dependent electronic excitation after pumping, but it is
limited to a single-particle process where collective exci-
tation appears indirectly.
The recent development of time-resolved resonant-

inelastic x-ray scattering (TRRIXS) opens a new avenue
for probing collective two-particle excitation, from which
one can investigate novel photoinduced nonequilibrium
phenomena in the wide range of momentum and energy
spaces [6–9]. RIXS can probe not only charge excitation
but also magnetic excitation if one uses incident x rays
tuned for L edge in transition metals. If the lifetime of an
intermediate state in the L-edge RIXS process is short
enough, the dominant contribution to the RIXS spectrum
comes from the dynamical charge and spin structure factors
[10–12]. It is also numerically shown that even for a
realistic lifetime scale of an intermediate state in cuprate
materials, the magnetic excitation in RIXS gives informa-
tion on the dynamical spin structure factor [13]. Therefore,
TRRIXS is an ideal tool for characterizing transient
spin dynamics. In fact, TRRIXS has been applied for
two-dimensional antiferromagnetic (AFM) Mott insulating
materials, Sr2IrO4 [6] and Sr3Ir2O7 [9]. The transient

change and recovery of spin-wave excitation have been
reported in the timescale of (sub)picosecond. These pio-
neering works open a new window to study novel phenom-
ena in photoexcited AFM Mott insulators.
In this Letter, we theoretically investigate momentum-

dependent spin excitation that evolves after pumping within
a femtosecond timescale in the AFM Mott insulator on a
square lattice. Using a numerically exact-diagonalization
technique for a half-filled Hubbard model, we find novel
momentum-dependent transient spin dynamics. In particu-
lar, we demonstrate characteristic temporal oscillations for
the intensity of the dynamical spin structure factor, showing
an antiphase behavior for two orthogonal directions that are
parallel and perpendicular to the electric field of a pump
pulse. Their oscillation period in time is determined by two-
magnon excitation in the Mott insulator. This theoretical
prediction will be confirmed for Mott insulating cuprates
and iridates once TRRIXS is ready for a femtosecond
timescale.
In order to describe Mott insulating states in cuprates, we

take a single-band Hubbard model on a square lattice at half
filling given by

H0 ¼ −th
X

iδσ

c†iσciþδσ − t0h
X

iδ0σ

c†iσciþδ0σ þ U
X

i

ni↑ni↓;

where c†iσ is the creation operator of an electron with spin σ
at site i, number operator niσ ¼ c†iσciσ, iþ δ (iþ δ0)
represents the four first (second) nearest-neighbor sites
around site i, and th, t0h, and U are the nearest-neighbor
hopping, the next-nearest-neighbor hopping, and on-site
Coulomb interaction, respectively. We take U=th ¼ 10 and
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t0h=th ¼ −0.25 without being otherwise specified, which
are typical values for cuprates with th ∼ 0.35 eV.
We use a square-lattice periodic Hubbard cluster with

4 × 4 sites. We incorporate an external electric filed via the
Peierls substitution in the hopping terms, c†i;σcj;σ →

e−iAðtÞ·Rijc†i;σcj;σ , leading to time-dependent Hamiltonian
HðtÞ. Here, AðtÞ is the vector potential given by
AðtÞ¼A0e

−ðt−t0Þ2=ð2t2dÞ cos½ωpðt− t0Þ�, where a Gaussian-
like envelope centered at t0 has a temporal width td and a
central frequency ωp. We apply the external electric
field along the x direction, i.e., A0 ¼ ðA0; 0; 0Þ, and set
A0 ¼ 0.5, t0 ¼ 0, td ¼ 0.5, and ωp ¼ U without being
otherwise specified. Hereafter we use th ¼ 1 as an energy
unit and 1=th as a time unit.
In order to calculate the wave function’s time evaluation

jψðtþ δtÞi ¼ e−iHðtÞδtjψðtÞi, we employ sequential oper-
ations of HðtÞ [14] based on the Taylor expansion:
jψðtþ δtÞi ≃P

M
l¼0 jϕli, where jϕ0i ¼ jψðtÞi and jϕlþ1i ¼

−iHðtÞδt=ðlþ 1Þjϕli. δt is set to 0.01 andM is determined
so as to satisfy hϕMjϕMi < 10−14.
In calculating the dynamical charge and spin correlation

functions in the one-dimensional Hubbard model [15]
and the K-edge RIXS spectrum in the two-dimensional
Hubbard model [16], the real-time representation of time-
dependent cross section has been used. Instead, here we use
the spectral representation of dynamical correlation func-
tions regarding jψðtÞi as an initial state, which is easily
formulated for the systems without time-dependent terms in
their Hamiltonian [17]. Applying this formalism to a time
region after turning off the pump pulse, t > toff , where the
Hamiltonian is time independent, we obtain the time-
resolved dynamical correlation function with momentum
q and frequency ω for a physical quantity O [18] as

Oðq;ω; tÞ ¼ Im
X

m;n

1

ωþ εm − εn þ iη

× ½hψðtÞjÔ−qjmihmjÔqjnihnjψðtÞi
− hψðtÞjmihmjÔqjnihnjÔ−qjψðtÞi�; ð1Þ

where H0jmi ¼ εmjmi, η is a small positive number, and
jψðtÞi ¼ e−iH0ðt−toff ÞjψðtoffÞi. We note that replacing jψðtÞi
by the ground state j0i ¼ jψð−∞Þi in Eq. (1) formally
gives the equilibrium dynamical correlation function
Oðq;ωÞ. We choose Ôq ¼ Szq ¼ P

i e
−iq·RiSzi for the

time-resolved dynamical spin structure factor Sðq;ω; tÞ
and Ôq ¼ Nq ¼ P

i e
−iq·RiNi for the time-resolved

dynamical charge structure factor Nðq;ω; tÞ, where Szi is
the z component of a spin operator and Ni is an electron-
number operator at site i. The integration of the second term
in Eq. (1) with respect to ω (−∞ ≤ ω ≤ ∞) for Sðq;ω; tÞ
[Nðq;ω; tÞ] gives the time-resolved static spin [charge]
structure factor Sðq; tÞ≡ hψðtÞjSzqSz−qjψðtÞi [Nðq; tÞ≡
hψðtÞjNqN−qjψðtÞi].

We first discuss charge dynamics that creates the
collapse of the Mott gap and forms an in-gap state after
photoexcitation. Figure 1 demonstrates a change of charge
dynamics from the equilibrium Nðq;ωÞ to Nðq;ω; t ¼ 4Þ.
Nðq;ωÞ shows momentum-dependent excitations across
the Mott gap (colored in gray for each q), which have been
observed by Cu K-edge RIXS in insulating cuprates [19].
After pumping, an in-gap excitation emerges inside the
Mott gap below ω ∼ 7with broad spectral weight [16]. This
photoinduced in-gap charge dynamics has been discussed
for the same 4 × 4 Hubbard lattice [18]. The center of
gravity for the in-gap spectral weight is momentum
dependent: it is lower in energy for small q and the highest
at q ¼ ðπ; πÞ. This momentum dependence is qualitatively
similar to Nðq;ωÞ for the two-hole doped 4 × 4 Hubbard
model, but its center of gravity is clearly higher in energy
and its spectral distribution is sharper. These differences
demonstrate a contrasting behavior between chemical
doping and photodoping. Our calculated data indicate that
photodoping induces strong incoherent charge excitation
with renormalized energy and broader spectral weight than
chemical doping. This may be caused by a drastic change
of the electronic state due to photoirradiation.
In contrast to charge dynamics, spin dynamics does not

show a dramatic change in the spectral distribution.
Figure 2(a) shows the equilibrium Sðq;ωÞ, where the
q ¼ ðπ; πÞ excitation has the largest intensity. After turning
off a pump pulse, we find that the spectral intensity
decreases but excitation energy is unchanged from
Sðq;ωÞ, as shown in Figs. 2(b) and 2(c) for Sðq;ω; t ¼
4Þ and Sðq;ω; t ¼ 7Þ, respectively. However, one can find a
notable change of spectral behavior after pumping: equiv-
alent momentum points due to reflection symmetry along
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FIG. 1. Dynamical charge structure factor before and after
pumping for the half-filled 4 × 4 Hubbard lattice with th ¼ 1,
t0h ¼ −0.25, and U ¼ 10. The black broken line on each panel
represents the equilibrium Nðq;ωÞ for q denoted in the panel.
The black and green solid lines represent Nðq;ω; t ¼ 4Þ for q
denoted by the same color in each panel. The red broken line on
each panel represents Nðq;ωÞ for two-hole doped case for the
same lattice.
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the (1,1) axis exhibit different weights. For example, the
spectral intensity at q ¼ ðπ; 0Þ is larger than that at q ¼
ð0; πÞ in Fig. 2(b). This means that the reflection symmetry
is broken. Since an electric field is applied along the x
direction, this symmetry breaking would be a natural
consequence as expected. A more interesting observation
is that the intensity is strongly time dependent: at t ¼ 7 the
intensity at q ¼ ðπ; 0Þ is smaller than that at q ¼ ð0; πÞ as
seen in Fig. 2(c). This indicates the presence of an
oscillating behavior in spectral intensity as a function of t.
Since the oscillation of spectral weight causes a change

of integrated intensity with respect to ω, it is useful to
investigate the time-resolved static spin structure
factor Sðq; tÞ, which is shown in Fig. 3 for the 4 × 4
Hubbard lattice with U ¼ 10 but without t0h. Note that t0h
does not change oscillating behaviors in Fig. 3. In
calculating Sðq; tÞ, we introduce various boundary con-
ditions and average them in order to minimize finite-size
effects [20].
In Fig. 3, we find that applying a pumping pulse enhances

the magnitude of Sðq; tÞ for small q [q ¼ ðπ=2; 0Þ, ð0; π=2Þ,
ðπ; 0Þ, ð0; πÞ, and ðπ=2; π=2Þ] while it reduces its magnitude
for q ¼ ðπ; π=2Þ and ðπ=2; πÞ as well as for ðπ; πÞ (∼40%
reduction but not shown here). This is because the resonant
photoirradiation on the AFMMott insulator destroys short-
ranged AFM correlation, leading to the suppression of spin
correlation for large q values but the enhancement for small
q ones. The Sðq; tÞ exhibits oscillations except for
q ¼ ðπ=2; π=2Þ. The oscillations are antiphase between
two momenta equivalent under the reflection with respect
to the (1,1) axis.
To clarify the origin of the antiphase oscillations, we

focus on two momenta, q ¼ ðπ; 0Þ and ð0; πÞ, and plot
Sðq; tÞ for various ωp in Fig. 4 [21]. At ωp ¼ 20

ð>U ¼ 10Þ, the mean value of Sðq; tÞ with respect to t

is almost unchanged from the equilibrium SðqÞ as shown in
Fig. 4(a), being consistent with an off-resonance condition.
During pumping centered at t ¼ 0 (see Fig. 3), S(q ¼
ðπ; 0Þ; t) decreases while S(q ¼ ð0; πÞ; t) increases. The
decrease of S(q ¼ ðπ; 0Þ; t) may be understood if one
regards the pump pulse as an approximate periodic pulse
and applies the Floquet theory with the condition ωp ≫ U,
where the leading term of effective AFM exchange inter-
action in the x direction parallel to an applied electric field
is given by Jeffk ¼ 4t2hJ0ðA0Þ2=U using the zeroth-order

Bessel function J0 of the first kind [22]. Jeffk is smaller than

the original exchange interaction J ¼ 4t2h=U, leading to
the reduction of S(q ¼ ðπ; 0Þ; t) during pumping. To the
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FIG. 2. Dynamical spin structure factor before and after
pumping for the half-filled 4 × 4 Hubbard lattice with th ¼ 1,
t0h ¼ −0.25, and U ¼ 10. (a) Sðq;ωÞ before pumping for q
denoted in each panel. (b) Sðq;ω; t ¼ 4Þ. The red lines in three
panels from the top represent the spectrum for the q value denoted
by red color. (c) The same as (b) but for t ¼ 7.
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FIG. 4. Time-resolved static spin structure factor Sðq; tÞ at q ¼
ðπ; 0Þ and ð0; πÞ for the half-filled 4 × 4 Hubbard lattice with
th ¼ 1 and U ¼ 10. (a) ωp ¼ 20, (b) ωp ¼ 8, (c) ωp ¼ 4, and
(d) ωp ¼ 1. (e) The power spectrum for ωp ¼ 20, (f) for ωp ¼ 8,
(g) for ωp ¼ 4, and (h) for ωp ¼ 1. The vertical broken line in
(e)–(h) represents an eigenenergy with B1g symmetry, where two-
magnon Raman intensity is maximized under periodic boundary
conditions.
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contrary, the exchange interaction perpendicular to the
electric field, Jeff⊥ , is unchanged from J during pumping.
Although there is no change of Jeff⊥ , S(q ¼ ð0; πÞ; t)
increases. This increase will be explained by the sum rule
of the static spin structure factor that forces us to com-
pensate the reduction of S(q ¼ ðπ; 0Þ; t) by enhanc-
ing S(q ¼ ð0; πÞ; t).
At near resonance ωp ≲ U [Fig. 4(b); also see Fig. 3],

S(q ¼ ðπ; 0Þ; t) increases quicker than S(q ¼ ð0; πÞ; t)
during pumping. This is an opposite behavior to the
case of ωp ¼ 20 > U. It is crucial to note that resonant
driving by a periodic electric field with ωp ¼ U gives rise
to an additional process due to doublon association
and dissociation [23]. The additional process induces a
new contribution to the exchange interaction given by
4t2hJ1ðA0Þ2f1=ðU−ωpÞþ1=ðUþωpÞg [24,25] for ωp ≲ U
on top of nonresonant contribution 4t2hJ0ðA0Þ2=U, where
J1 is the first-order Bessel function of the first kind. This
new contribution enhances Jeffk , resulting in the increase of
S(q ¼ ðπ; 0Þ; t) during pumping.
The discussion based on the Floquet theory can also be

applied to another off-resonance case with th ≪ ωp ≪ U,
which corresponds to the case of ωp ¼ 4 in Fig. 4(c). In this
case, S(q ¼ ðπ; 0Þ; t) increases during pumping. This
increase can be understood by the enhancement of Jeffk
due to the Floquet sideband in the weak excitation regime
[22]. S(q ¼ ð0; πÞ; t) decreases due to the sum rule. We
find a qualitatively similar change during pumping even for
the case of ωp ¼ 1, as shown in Fig. 4(d).
Now let us discuss the antiphase oscillations at q ¼ ð0; πÞ

and ð0; πÞ after turning off a pump pulse. At ωp ¼ 20, we
find oscillations with period ∼6 [see Fig. 4(a)]. This period
produces a peak atω ¼ 1 in the power spectrum as shown in
Fig. 4(e).We find that the frequency ofω ¼ 1 agrees with an
eigenenergy in the B1g-symmetry subspace with zero total
momentum of H0, which is denoted by the vertical broken
line in Figs. 4(e)–4(h). Thismeans that the oscillation is Rabi
type between the ground state and the B1g eigenstate. The
B1g eigenstate is a Raman active state in H0 and gives the
highest spectral weight in a two-magnon Raman process
[26]. Therefore, it is reasonable to consider that photoexcited
states after pumpingmay predominantly consist of the bases
with B1g symmetry. This reasoning naturally leads to a
contribution of the B1g eigenstate jB1gi with energy εB1g

to

Sðq; tÞ ¼P
mn e

iðεm−εnÞthψðtoffÞjmihmjSzqSz−qjnihnjψðtoffÞi,
which is given by

SB1g
ðq; tÞ ¼ eiðεB1g−ε0Þth0jψðtoffÞihψðtoffÞjB1gi

× hB1gjSzqSz−qj0i þ c:c:

This gives rise to an oscillation with frequency εB1g
− ε0. In

addition, the reflection along the (1,1) axis σ̂d applied to q

yields hB1gjSzσ̂dðqÞS
z
σ̂dð−qÞj0i ¼ −hB1gjSzqSz−qj0i, leading to

SB1g
(σ̂dðqÞ; t) ¼ −SB1g

ðq; tÞ. This is the origin of antiphase
oscillations between S(q ¼ ðπ; 0Þ; t) and S(q ¼ ð0; πÞ; t).
In other words, a dominant contribution of the B1g excited
states to the time-dependent wave function leads to out-of-
phase oscillations in the spin structure factor at the originally
equivalent two momentum positions, q ¼ ðπ; 0Þ and ð0; πÞ.
This phase difference is consistent with the sign difference
of an x2 − y2 function with the B1g symmetry between
ðx; yÞ ¼ ðα; 0Þ and ð0; αÞ.
A remaining question is why the B1g eigenstate is

predominately selected during pumping. We should
emphasize that the B1g eigenstate is the final state of a
two-magnon Raman process, where magnetic excitation is
minimized in energy among other excited states. This
means that off-resonant photoexcitation selects a magneti-
cally stable state.
With decreasing ωp, the power spectrum has a peak at

ω ¼ 1 as shown in Figs. 4(f) and 4(g). In addition, there is
another peak at ω ¼ 1.5 in Figs. 4(g) and 4(h). There are both
the B1g and A1g eigenstates near ω ¼ 1.5. Therefore, it is not
easy to assign which eigenstate contributes to the peak
position, but the B1g eigenstate will be more probable because
of the presence of antiphase oscillations even forωp ¼ 1 [27].
The antiphase oscillations in spin correlation between

q ¼ ðq; 0Þ and ð0; qÞ seem to be a characteristic effect in
photoexcitaed AFM Mott insulator. It would be possible
to detect such oscillations in Sðq;ω; tÞ by the L-edge
TRRIXS [28] for cuprate and iridate AFMMott insulators
if the present experimental time resolution (∼400 fs [9]) is
improved by more than an order of magnitude. As
discussed above, the antiphase oscillations are clear
evidence for the presence of photoexcited B1g states if
an electric field is applied along the direction of AFM
exchange interaction in a square lattice. Therefore,
TRRIXS that can detect this evidence will develop as
one of the novel techniques to clarify the symmetry of
photoexcited states.
In summary, we have numerically examined momentum-

dependent spin and charge excitations after turning off a
pumping pulse in the AFM Mott insulator on a square
lattice described by the half-filled Hubbard model. We have
clearly found novel momentum-dependent transient spin
dynamics, where the temporal oscillations of the intensity
of spin excitation show an antiphase behavior for two
orthogonal directions that are parallel and perpendicular to
the electric field of a pump pulse. Their oscillation period in
time is determined by the excitation energy of two magnons
in the AFM Mott insulator and the phase difference comes
from the B1g channel of the two-magnon excitation. This
result is a theoretical prediction, and thus observing this
prediction will be a challenging subject for TRRIXS
experiment when its time resolution is improved by more
than an order of magnitude.
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