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(Received 23 June 2020; revised 8 September 2020; accepted 3 February 2021; published 25 March 2021)

Topological materials rely on engineering global properties of their bulk energy bands called topological
invariants. These invariants, usually defined over the entire Brillouin zone, are related to the existence of
protected edge states. However, for an important class of Hamiltonians corresponding to 2D lattices with
time-reversal and chiral symmetry (e.g., graphene), the existence of edge states is linked to invariants that
are not defined over the full 2D Brillouin zone, but on reduced 1D subspaces. Here, we demonstrate a novel
scheme based on a combined real- and momentum-space measurement to directly access these 1D
topological invariants in lattices of semiconductor microcavities confining exciton polaritons. We extract
these invariants in arrays emulating the physics of regular and critically compressed graphene where Dirac
cones have merged. Our scheme provides a direct evidence of the bulk-edge correspondence in these
systems and opens the door to the exploration of more complex topological effects, e.g., involving disorder
and interactions.

DOI: 10.1103/PhysRevLett.126.127403

Topological bands are characterized by integer-valued
quantities, called topological invariants, that are typically
defined as the integral of a local property (e.g., the Berry
curvature) over the full Brillouin zone (BZ). The hallmark
of these invariants is their robustness against local pertur-
bations, which endows topological matter with properties
that are insensitive to certain types of disorder [1,2]. One
notable example is provided by the edge conductivity
plateaus in the quantum Hall effect that can be linked to
a topological invariant called the Chern number [3].
A distinct situation arises in 2D crystals presenting time-

reversal and chiral (or sublattice) symmetry, such as
honeycomb, Lieb, or Mielke lattices. The bands of these
materials are either ungapped or present a globally vanish-
ing Berry curvature; they thus cannot be described by a
nonzero first-order topological invariant defined over the
entire BZ such as the Chern number. Yet, for well-defined
crystalline terminations, these materials present edge states
that can be linked to topological invariants defined over
reduced (1D) subspaces of the BZ [4,5].
So far, these 1D invariants have solely been determined

indirectly by probing the emergence of edge states in
honeycomb lattices [6,7]. Yet, they are bulk properties, and
one should be able to extract them without relying on
measurements localized at an interface. This is critical in
several situations where edges are difficult to probe, e.g., in
disordered lattices [8,9]. Extracting topological invariants
from the bulk is a challenging task in solid-state crystals.

Hence, artificial materials, e.g., arrays of cold atoms
[10,11] or photonic crystals [12–14], are particularly
appealing as they allow accessing topological properties
of band structures through optical means [15–20].
In this work, we propose and experimentally demon-

strate a powerful technique that allows measuring topo-
logical invariants in 2D artificial lattices with chiral
symmetry. This technique, based on the concept of mean
chiral displacement [21,22], consists in optically probing
the spatial distribution of a wave packet for a specific
momentum component. The experimental implementation
of this scheme is realized in patterned semiconductor
microcavities confining exciton polaritons [23]. This
system is particularly well suited for this purpose, as its
dissipative nature allows accessing both momentum and
real-space profiles of Bloch modes with simple imaging
techniques. Using polaritonic lattices emulating regular
[24] and critically compressed [25] graphene (i.e., where
Dirac cones have merged), we measure these 1D topo-
logical invariants and thus provide a direct evidence of the
bulk-edge correspondence in these systems.
In the sublattice basis, the tight-binding Hamiltonian in

momentum space describing a particle hopping on a
honeycomb lattice is given by

HHCðk⃗Þ ¼ −

 
0 gðk⃗Þ

gðk⃗Þ† 0

!
; ð1Þ
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where gðk⃗Þ ¼ jð1þ e−ik⃗·a⃗1 þ e−ik⃗·a⃗2Þ, with j the
nearest-neighbor hopping amplitude. HHC is defined for
a unit cell compatible with bearded edges when considering
a finite-sized ribbon along y, with periodic boundary
conditions along x, see Fig. 1(a); for zigzag edges,

gðk⃗Þ ¼ jð1þ e−ik⃗·a⃗2 þ eik⃗·ða⃗1−a⃗2ÞÞ. For simplicity, we only
consider bearded and zigzag terminations, but the argument
and experimental technique developed in this work can be
extended to arbitrary edges (such as armchair ones) [5].
The topological properties of this Hamiltonian are linked

to its chiral symmetry associated to the anticommutation
rule fH; σzg ¼ 0, where σz is a Pauli matrix. This allows
defining 1D topological invariants for each cut in the BZ
along y. This is best seen by separating the momentum
components parallel (kx) and perpendicular (ky) to the edge

in gðk⃗Þ:

gðk⃗Þ ¼ JðkxÞ þ J0ðkxÞe−ið3=2Þaky ; ð2Þ

where JðkxÞ ¼ j̃ and J0ðkxÞ ¼ 2j̃ cosð ffiffiffi
3

p
akx=2Þ for

bearded edges (with j̃ ¼ je−ið
ffiffi
3

p
akx=2Þ), and vice versa for

zigzag edges. For each momentum component kx, HHC is
isomorphic (along y) to the Hamiltonian of the well-known
Su-Schrieffer-Heeger (SSH) model, which represents a 1D
dimer chain with different intracell (J) and intercell (J0)
coupling energies [see Fig. 1(b)]. For this Hamiltonian, it is

possible to define a topological invariant called the winding
numberWSSH, which is equal to 0 for jJ=J0j > 1 and equal
to 1 for jJ=J0j < 1. In the latter case, the nonzero topo-
logical invariant is linked to the existence of zero-energy
edge states.
In a similar manner, it is possible to define a winding

number of HHC for each value of kx:

WHCðkxÞ ¼
1

2π

Z
BZ

dky
∂ϕðk⃗Þ
∂ky ; ð3Þ

where ϕðk⃗Þ ¼ arg½gðk⃗Þ�. This 1D topological invariant is
equal to the geometric (or Zak) phase picked up by a
particle spanning the BZ along ky, divided by π. It can only
take two values: 0 for jJ0ðkxÞ=JðkxÞj < 1 and 1 for
jJ0ðkxÞ=JðkxÞj > 1 [see Fig. 1(c)], which is equal to the
number of edge states at the corresponding momentum kx
[5–7,26]. Transitions from one value of the winding
number to the other occur at the positions of the Dirac
cones: this reflects the fact that the gap needs to close and
reopen in order to change a topological invariant.
Interestingly, for armchair terminations the winding num-
ber vanishes throughout the BZ because gðk⃗Þ always
follows a straight line in the complex plane when kx is
varied.
The winding number of 1D chiral Hamiltonians can be

extracted by probing the spatial evolution of a wave packet
initially localized on a single unit cell [21,22] and comput-
ing a quantity called the mean chiral displacement. Related
studies showed that the winding can also be extracted by
preparing initial conditions on a single site of a given
sublattice and measuring the mean displacement on the
other sublattice only [8,27–29]. Hereafter, we demonstrate
how this concept can be extended to two-dimensional
lattices. This is realized in a hexagonal lattice of coupled
micropillars obtained by etching a semiconductor planar
microcavity confining exciton polaritons [see Fig. 2(a) and
Supplemental Material [30] ]. The coupling of the ground
state of each pillar gives rise to two bands emulating the π
and π� bands of graphene [see Fig. 2(b)]. Throughout this
work, we consider polaritonic states in the low power linear
regime.
Our technique for extracting the mean chiral displace-

ment as a function of kx relies on photoluminescence (PL)
measurements with combined real- and momentum-space
resolution. The excitation is provided by a nonresonant cw
laser focused on a single pillar that generates an incoherent
wave packet spanning both energy bands. We then measure
its time-integrated emission profile along y, while filtering
a well-defined momentum component along x. This is done
using the optical imaging technique described in Fig. 2(c),
where a cylindrical lens (CL) with a curvature along x is
positioned at a focal distance of the Fourier plane (red
dashed line) of collection lens L1. The CL alters light
trajectory only along x, providing a Fourier transform of the

(a)

(c)

(b)

FIG. 1. (a) Definition of the unit cell for bearded and zigzag
terminations. a1;2 ¼ f�3=

ffiffiffi
2

p
; 3=2ga are the primitive vectors.

(b) Schematic representation of the two topological phases of the
SSH model. The dotted lines indicate the boundaries of unit cells.
(c) Evolution of the winding number in graphene as kx spans the
BZ for bearded and zigzag terminations. White and blue regions
correspond, respectively, toWHC ¼ 0 andWHC ¼ 1. Red dashed
line indicates the position of kx ¼ 0.
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emission in this direction (upper panel); along y, L1 and L2

simply provide real-space imaging of the emission (lower
panel). Using a vertical slit at the imaging plane, this optical
setup thus allows selecting a well-defined value of kx, while
simultaneously accessing the spatial profile along y.
Using this setup, Fig. 2(d) presents a spatially resolved

(along y) emission profile for a position of the CL selecting
momentum component kx ∼ 0. This steady-state emission
profile clearly describes the physics of a dimer chain with a
lower bonding band and an upper antibonding band. From
this intensity profile, it is then possible to extract the
winding number by computing the mean chiral displace-
ment [21,22] (see Supplemental Material [30]):

CðkxÞ ¼
Z

dy2ΓðyÞYðyÞIðintÞðy; kxÞ; ð4Þ

where the integral is taken over the entire emitting region.
IðintÞðy; kxÞ is the normalized energy-integrated spatial
profile of the emission [Fig. 2(e)], ΓðyÞ labels the sublattice
index of the site [i.e.,þ1 (−1) for the A (B) sublattice], and
YðyÞ labels the index of the unit cell (the wave packet is
created in the zeroth unit cell). The product ΓðyÞYðyÞ is a
function describing the observable quantity associated to
the chiral displacement operator Γ̂ Ŷ.
For a finite lattice, the unit cell is defined by the edge.

However, in the bulk, the two definitions shown in Fig. 1(a)
are equally valid, and, in the same experiment, we can
computeWHC by simply shifting the definition of Γ. Values
of ΓðyÞYðyÞ are presented in Fig. 2(f), where the blue and
red curves are compatible, respectively, with bearded and

zigzag terminations. Computation of the mean chiral
displacement, for kx ¼ 0, leads to Cz ¼ 0.12ð8Þ and Cb ¼
0.84ð8Þ for the zigzag and bearded edges, which clearly
allows discriminating the two topological phases. The
observed deviation from a quantized winding number is
a direct consequence of the non-Hermitian nature of
exciton polaritons: their finite lifetime prevents the wave
packet from reaching a fully balanced distribution over the
two sublattices (see Supplemental Material [30] for a
derivation of C in the presence of losses).
Note that the bands are not perfectly chiral symmetric,

due to a slight deviation from the tight-binding approxi-
mation [31]. However, this asymmetry does not affect the
measurement of the mean chiral displacement [30,32].
It is then possible to access profiles associated to different

kx values by laterally shifting the CL. Figures 3(a) and 3(b)
show spatially resolved emission spectra for different kx
(indicated on the right). These profiles are qualitatively very
different from the one measured at kx ¼ 0 as the effective
coupling ratio (J0=J) changes. The emission pattern in
Fig. 3(a) exhibits bands which are almost flat, as one of
the two coupling coefficients vanishes. In Fig. 3(b), J0=J is
negative, leading to a reversal of the bonding and antibond-
ing bands.
Figure 3(c) presents measured values of the mean chiral

displacement as a function of kx, obtained by scanning
laterally the CL. Solid lines show numerical calculations of
the mean chiral displacement including the effect of
polariton lifetime (see Supplemental Material [30]).
These measurements of the mean chiral displacement show
good agreement with the predicted values of the winding

(e)

(f)

(a) (b) (d)

(c)

FIG. 2. (a) Scanning electron microscopy (SEM) image of a honeycomb lattice of coupled micropillars. (b) Momentum-resolved
emission spectra of a polaritonic graphene lattice. E0 ¼ 1.571 eV. The cut in the BZ along which the image is taken is depicted in the
inset. (c) Schematic representation of the setup. Upper and lower panels depict top and side views. (d) Spatially resolved steady-state
emission spectra (along y) for a value of kx ∼ 0. The position of the different sites of the effective SSH lattice is indicated above, where
the pumped pillar is in red. (e) Emission intensity integrated over both bands as a function of spatial position. (f) Definition of the chiral
displacement ΓY as a function of spatial position. The blue (red) curves correspond to definition of the unit cell compatible with zigzag
(bearded) edges. The values of the mean chiral displacements Cz and Cb extracted from the spectrum presented in (e) are given on the
right-hand side of this panel.
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number: each time kx crosses Dirac cones (indicated by
vertical dotted lines), the values of C associated to each
definition of the unit cell are exchanged, indicating a
topological phase transition. Despite the presence of dis-
sipation, these measured values of the mean chiral dis-
placement present a clear contrast between high and low
values, allowing us to unambiguously identify each topo-
logical phase. One important consequence of these tran-
sitions is the emergence (or disappearance) of zero-energy
edge states as a function of kx. Shaded blue (red) areas are
indeed fully compatible with the values of kx where zigzag
(bearded) terminations exhibit edge states, as reported
experimentally in Refs. [6,7,30].
Having demonstrated the measurement of winding

numbers in a honeycomb lattice using the mean chiral
displacement, we now show its versatility by applying this
technique to a lattice compressed beyond the merging
transition [33] of Dirac cones. It was shown, both theo-
retically [34,35] and experimentally [36–40], that applying
a uniaxial strain to honeycomb lattices along the y axis by
increasing the hopping amplitude j0 with respect to j, as
depicted in Fig. 4(a), shifts the position of the Dirac cones
in the band structure along kx. For strain coefficients
β ¼ j0=j > 1 (i.e., compression), K and K0 Dirac cones
move toward each other and merge at the critical value of
β ¼ 2, leading to the opening of an energy gap for every kx.
This disappearance of gap closings eliminates the
previously observed topological transitions between
regions separated by Dirac cones.
To demonstrate this disappearance of phase transitions,

we fabricate a lattice of coupled micropillars with center-to-
center distances a ¼ 2.4 μm and a0 ¼ 1.7 μm correspond-
ing to β ¼ 3 [a SEM image of the lattice is shown in
Fig. 4(b)]. Using the same measurement protocol as the one
used for regular graphene, Fig. 4(c) presents the evolution
of the values of mean chiral displacement as a function of
kx, for unit cells compatible with zigzag and bearded
terminations. Both values of the mean chiral displacement

(Cb ∼ 0.1 and Cz ∼ 0.9, respectively) are now independent
of kx, indicating the disappearance of topological phase
transitions.
As a result, bearded terminations never present edge

states, and zigzag ones do for all values of kx. This is

(a)

(b)

(c)

FIG. 3. (a),(b) Spatially resolved (along y) emission spectra for two distinct momentum components kx schematically depicted on the
right. Values of C for zigzag and bearded edges are provided above each panel. E0 ¼ 1.571 eV. (c) Evolution of the mean chiral
displacement as a function of kx. Blue and red circles correspond to values associated to the two possible definitions of the unit cell:
respectively, bearded and zigzag. Blue (red) shaded areas correspond to regions where WHC ¼ 1 for a unit cell definition compatible
with zigzag (bearded) terminations. The solid line represents a theoretical calculation of the mean chiral displacement including losses,
which is presented (along with error analysis) in Supplemental Material [30].

(d)

(a) (b)

(c)

(e)

FIG. 4. (a) Schematic representation of the effect of compres-
sion on the lattice. The compression factor is defined as β ¼ j0=j.
(b) Top view SEM image of the compressed honeycomb lattice.
White circles are added to indicate the positions of the pillars.
(c) Evolution of the mean chiral displacement for both definitions
of the unit cell. Blue circles correspond to the definition depicted
in Fig. 1(a). (d),(e) Momentum-resolved PL spectra measured at
the boundary of the lattice, along a bearded (d) and a zigzag
(e) termination. The cut in the BZ along which both images are
taken is depicted on the right. The blue arrow highlights the
presence of an edge state in the zigzag termination case.
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confirmed by probing the emission near the boundaries of
the lattice: Figures 4(d) and 4(e) present PL spectra as a
function of momentum along bearded and zigzag termi-
nations, respectively. For the zigzag termination, an edge
state band emerges in the center of the gap, whereas no
edge state is observed for the bearded termination. This
provides a direct evidence of the bulk-edge correspondence
in this lattice.
In conclusion, we demonstrated a powerful approach for

measuring 1D topological invariants from the bulk of 2D
lattices presenting chiral symmetry. One important next
step is to extend our scheme to more complex systems, e.g.,
involving flatbands [41,42], higher-energy orbitals [25,43],
critical strain [40], or synthetic dimensions [44].
Furthermore, it would be interesting to explore how this
scheme could be extended to the extraction of higher-order
topological invariants [45–48] or Chern numbers in lattices
with broken time-reversal symmetry [16]. Finally, although
the present work deals with polaritons in the linear regime,
their hybrid light-matter nature could allow probing, at
higher excitation powers, the effect of interactions on
topological invariants [49].
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