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We study the phase transitions of a fluid confined in a capillary slit made from two adjacent walls, each
of which are a periodic composite of stripes of two different materials. For wide slits the capillary
condensation occurs at a pressure which is described accurately by a combination of the Kelvin equation
and the Cassie law for an averaged contact angle. However, for narrow slits the condensation occurs in two
steps involving an intermediate bridging phase, with the corresponding pressures described by two new
Kelvin equations. These are characterised by different contact angles due to interfacial pinning, with one
larger and one smaller than the Cassie angle. We determine the triple point and predict two types of
dispersion force induced Derjaguin-like corrections due to mesoscopic volume reduction and the singular
free-energy contribution from nanodroplets and bubbles. We test these predictions using a fully
microscopic density functional model which confirms their validity even for molecularly narrow slits.
Analogous mesoscopic corrections are also predicted for two-dimensional systems arising from thermally
induced interfacial wandering.
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The equilibrium phases of confined fluids have been the
subject of long-standing interest. At the bulk critical point,
fluctuations lead to the thermal analog of the Casimir force
[1], while at lower temperatures the liquid-gas phase
boundary is shifted leading to the phenomenon of capillary
condensation [2–5]. By having walls which preferentially
adsorb different phases one can also radically alter the
nature of the phase equilibria due to interfacial effects [6,7].
Indeed, it is now possible to observe experimentally the
condensation in pores of different geometries fabricated
using electron beam nanolithography [8]. In the present
Letter we discuss the nature of capillary condensation in a
slit for which the walls are periodically patterned with two
different types of material. This is much richer than that
occurring for chemically homogeneous slits since the
condensation from gas to liquid may either occur directly
or in two steps via an intermediate bridgelike phase. The
location of these phase transitions is described by gener-
alized Kelvin equations which involve one of three possible
contact angles each associated with meniscus pinning.
Only one of these angles is the Cassie angle [9], which
lies between the other two, somewhat analogous to contact

angle hysteresis [10,11]. By allowing for dispersion forces
we predict Derjaguin-like corrections to the Kelvin equa-
tions due to volume reduction and the singular free energy
of droplets and bubbles adsorbed at the walls.
To begin, we recall the macroscopic Kelvin equation and

mesoscopic Derjaguin correction for condensation in a
chemically homogeneous slit, made from two infinite
planar walls separated by a distance L. The fluid is at
pressure p (or, equivalently, chemical potential μ), at a
temperature T below the critical point. Confinement
changes the liquid-gas phase boundary, which is the
pressure when gas condenses to liquid, away from the
bulk saturation curve psatðTÞ. Macroscopically, the shift
from psat, at which capillary condensation (cc) occurs is
described by the Kelvin equation [12]

δpcc ¼
2γ cos θ

L
; ð1Þ

where θ is the contact angle defined by Young’s equation
γwg ¼ γwl þ γ cos θ for each semi-infinite wall. Here γwg,
γwl, and γ are the tensions of the wall-gas, wall-liquid, and
liquid-gas interfaces, respectively. For partial wetting the
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Kelvin equation is remarkably accurate for L down to tens
of molecular length scales. However, for complete wetting
(θ ¼ 0), corrections are apparent at the mesoscopic scale.
In particular, for systems with dispersion forces the Kelvin
equation is modified to [13,14]

δpcc ¼
2γ

L − 3l
; ð2Þ

which includes the Derjaguin correction allowing for the
thickness l of the liquid layer adsorbed at each wall in the
gaslike phase. This is very well approximated as
l ¼ ð2A=δpÞ−1=3, where A is the Hamaker constant and
δp ¼ psat − p, corresponding to the wetting layer thickness
at a single wall [15,16].
We now turn to a heterogeneous slit where the walls are

made of two materials arranged into a periodic array of
stripes of width H1 and H2, each characterized by different
contact angles θ1 and θ2. The two walls are adjacent with
translation invariance assumed along the stripes (i.e., the
stripes on the opposing walls are exactly aligned). We
assume that material 1 preferentially adsorbs liquid relative
to material 2 so that θ1 < θ2. The condensation in this
capillary may happen by two mechanisms similar to that if
there is a single stripe on each surface [17] or between
geometrically structured walls [18,19]. For wide slits it
occurs via a single first-order phase transition from a
gaslike to liquidlike phase similar to that for a chemically
homogeneous slit. However, if the slit is sufficiently
narrow, condensation happens in two steps via an inter-
mediate phase in which liquid bridges locally condense
between the stripes of the more wettable material 1 (see
Fig. 1). We first derive the generalized, macroscopic Kelvin
equations which determine the phase boundaries for each
type of condensation:
One-step condensation.—The pressure at which gas

condenses to liquid is determined by balancing the grand
potential Ω per unit length (along the stripe) and over a
single period of the two phases. For the gaslike phase

Ωg ≈ −pHLþ 2γð1ÞwgH1 þ 2γð2ÞwgH2, where γ
ðiÞ
wg are the wall-

gas tensions for each material and H ¼ H1 þH2.
Similarly, for the liquidlike phase we have Ωl ≈ −p†HLþ
2γð1Þwl H1 þ 2γð2Þwl H2, where p† is the pressure of the meta-

stable bulk liquid and γðiÞwl are two wall-liquid surface
tensions. Balancing the grand potentials determines that
the value of p − p† ≈ δpcc at which (single step) capillary
condensation occurs is given by

δpcc ¼
2γ cos θcas

L
; ð3Þ

which is unaltered if the stripes are not perfectly adjacent,
i.e., if the upper wall (say) in Fig. 1 is shifted or indeed,
rotated so the stripes are no longer parallel. This is the
obvious generalization of the standard Kelvin equation and

identifies that the appropriate contact angle appearing in it
is the familiar Cassie angle [9],

cos θcas ¼ f1 cos θ1 þ f2 cos θ2; ð4Þ

where fi ¼ Hi=H is a fraction of the wall area occupied by
each material. Viewed in terms of phase separation, θcas is
the angle that a circular meniscus of radius R ¼ γ=δpcc,
which separates the coexisting phases, meets both walls at
one of the edges between the two materials.
Two-step condensation.—In this case, there are two

phase boundaries corresponding to a pressure shift δpgb,
where the gas phase locally condenses to a bridge phase,
and a second δplb (at higher pressure) when the bridge
phase condenses to liquid. These are determined by
matching the grand potential of a bridge phase Ωb with
Ωg and Ωl. In each unit cell the liquid bridge is bounded by
two circular menisci of radius R ¼ γ=δp which are pinned
at the edges between the two materials (see Fig. 1). These
meet the walls at an edge contact angle θe, which is related
to the pressure by cos θe ¼ L=2R. The grand potential
of the bridge phase is given by Ωb ≈ −pAg − p†Alþ
2ðH1γ

ð1Þ
wl þH2γ

ð2Þ
wg Þ þ 2γlmen, where Ag and Al are the areas

occupied by the gas and (metastable) liquid, respectively,
and lmen is the length of each meniscus. Equating this value
with Ωg and Ωl determines the pressure shifts as

δpgb ¼
2γ cos θgb

L
; δplb ¼

2γ cos θlb
L

; ð5Þ

where θgb and θlb are the values of the edge contact angles
at the respective phase transitions given by [20]

FIG. 1. Schematic illustration of (a) gaslike, (b) liquid bridge
(blue), and (c) liquidlike configurations in a periodic slit. The
edge contact angle θe is highlighted, drawn here for p > psat.
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cos θ1 ¼ cos θgb þ
L

2H1

�
sin θgb þ sec θgb

�
π

2
− θgb

��
ð6Þ

and

cos θ2 ¼ cos θlb −
L

2H2

�
sin θlb þ sec θlb

�
π

2
− θlb

��
; ð7Þ

which satisfy θgb < θcas < θlb. The phase transition occur-
ring at δplb is equivalent to the local evaporation of liquid
between the less wettable stripes as p is reduced.
Condensation occurs via one step if θgb > θcas (wide

slits) or two steps if θgb < θcas (narrow slits). The marginal
case between these two different mechanisms occurs when
θgb ¼ θlb (equivalent to each being equal to θcas) and
identifies the triple point (T) where the gaslike, liquidlike
and bridging phases coexist. This happens when the aspect
ratio a≡ L=H1 takes the value

aT ¼ 2f2ðcos θ1 − cos θ2Þ
sin θcas þ sec θcasðπ2 − θcasÞ

: ð8Þ

In the limit f1 ¼ 0, Eq. (8) reduces to the result pertinent to
a parallel plate geometry in which there is just a single,
adjacent stripe, of material 1 on each wall [17]. If the aspect
ratio is greater than this value the condensation occurs via
one step. We illustrate this in Fig. 2, where we plot the three
contact angles appearing in the generalized Kelvin equa-
tions for a maximum contrast slit (θ1 ¼ 0 and θ2 ¼ π)
as a function of the aspect ratio a for equal stripe
widths H1 ¼ H2.
These macroscopic arguments do not allow for the

direct influence of dispersion forces. Recall that for a

homogeneous slit, they may be safely ignored for partial
wetting but lead to the Derjaguin correction (2) for
complete wetting. The situation is somewhat richer for
the patterned slit. If both materials are partially wet, then, as
for the homogeneous case, we anticipate that the Kelvin
equations for one and two step condensation remain
accurate down to molecularly narrow slits. However, if
one of the materials is wet (or dry) then the influence of the
long-range forces becomes important at the mesoscopic
scale. This is most transparent when we consider the
maximum contrast slit described above where material 1
is completely wet and material 2 is completely dry. In the
gaslike phase each stripe of material 1 is wet by a drop of
liquid and, in the liquidlike phase, each stripe of material 2
is wet by a bubble of gas. The volumes of these, which
would become macroscopic asH1,H2, and L increase need
to be taken into account when we consider, for example, the
value of the pressure shift δpT at the triple point. The shape
of these drops and bubbles is determined by the intermo-
lecular forces and can be calculated using interfacial
Hamiltonian methods [21]. The pressure shift at the triple
point for the maximum contrast slit is then modified from
Eq. (3) to

δpT ¼ 2γ cos θcas
L − π

4
ðf1lD þ f2lBÞ

; ð9Þ

where lD ¼ ðA1=2γÞ1=4
ffiffiffiffiffiffi
H1

p
is the maximum thickness of

the wetting drop and lB ¼ ðA2=2γÞ1=4
ffiffiffiffiffiffi
H2

p
is the maximum

thickness of the drying bubble. Here A1 and A2 are the
Hamaker constants for each material. Since at the triple
point H1 and H2 are both of order L, the reduction in the
effective slit width is greater than that occurring in a
homogenous system (since at condensation l ∼ L1=3). Note
that as H2 is reduced to a value ∝ lnH1 the drops coalesce
to cover the whole surface corresponding to a first-order
wetting transition at which θcas vanishes [22]. For smaller
values ofH2 both walls are completely wet and the location
of the single step condensation is described by the usual
Derjaguin correction (2).
The location of the triple point for the maximum contrast

slit is most subtle when the area fractions are equal,
f1 ¼ f2 ¼ 1=2, since in that case the wall is overall neutral,
θcas ¼ π=2. The Kelvin-Cassie equation (3) predicts that
single step condensation occurs at psat, while Eq. (8)
predicts that the triple point occurs for aT ¼ 1 (see
Fig. 2). This macroscopic prediction for aT is easy to
understand. The menisci which bound the liquid bridges
are flat with a free-energy cost of 2γL per unit cell. For the
gaslike (liquidlike) phase this must be compensated by
having a drop of liquid (bubble of gas) coat the wet (dry)
stripes which carries with it a macroscopic free-energy cost
of 2γH1 per unit cell. Thus, purely macroscopically, the
triple point must occur for L ¼ H1. When we include
dispersion forces, however, the surface free energy of a

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

aT

θcas

θgb

θlb

θe

a

FIG. 2. Contact angles appearing in the macroscopic Kelvin
equations for one step and two step condensation [see Eqs. (3)
and (5)] in a maximum contrast slit (θ1 ¼ 0 and θ2 ¼ π) as a
function of the aspect ratio a ¼ L=H1. For equal area fractions,
f1 ¼ f2 ¼ 1

2
, the triple point occurs at aT ¼ 1.
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liquid drop, and similarly for the gas bubble, contains a
Casimir-like contribution

ffiffiffiffiffiffiffiffiffiffiffiffi
2A1=γ

p
ln ðH1=σÞ, where σ is a

molecular diameter. Taking these into account determines
the higher-order contribution to Eq. (9) when the walls are
neutral:

δpT ¼
ffiffiffiffiffi
2γ

p
ð

ffiffiffiffiffi
A1

p
−

ffiffiffiffiffi
A2

p
Þ lnL=σ

L2
; for θcas ¼

π

2
: ð10Þ

This small shift therefore owes its origin to the difference in
the strengths of the dispersion forces; we note that it is
larger than the shift δpcc ¼ 2A=L3 for a homogeneous slit
when θ ¼ π=2. Similarly, for the aspect ratio we find

aT ¼ 1þ
ffiffiffiffiffi
A1

p þ ffiffiffiffiffi
A2

p
ffiffiffiffiffi
2γ

p lnL=σ
L

þ � � � ; ð11Þ

which approaches unity as the slit width increases.
We have tested the above prediction for the value of aT

for the maximum contrast slit using a microscopic density

functional theory (DFT) that we use to determine the
equilibrium density profiles and free-energies of stable
and metastable phases [23]. These are obtained by mini-
mizing a grand potential functional

Ω½ρ� ¼ F ½ρ� þ
Z

drρðrÞ½VðrÞ − μ�; ð12Þ

where VðrÞ is the external potential modelling the
long-ranged interaction from the patterned walls and
F ½ρ� is the intrinsic free-energy functional for which
we use Rosenfeld’s fundamental measure theory [24]
(see Supplemental Material [25]). We have determined
the phase coexistence for system sizes ranging from
L ¼ 10σ to L ¼ 110σ and for different stripe widths
H1ð¼ H2Þ. Figure 3 shows the equilibrium grand potential
versus the undersaturation close to the triple point for
H1 ¼ H2 ¼ 40σ and L ¼ 48σ. The three coexisting
density profiles are shown in Fig. 4. Finally, in Fig. 5
we plot the triple point aspect ratio as a function of slit
width which shows that, as predicted, the value tends to
unity as L increases. In the inset we show that the deviation
from unity is extremely well described by the lnL=L
correction in accordance with the prediction (11).
In three dimensions these results are not affected

significantly by thermal fluctuations where their only
influence is to round the bridging transitions associated
with two-step condensation over a pressure range
Oðe−γLH=kBTÞ. Thermal fluctuations are much more impor-
tant in two dimensions for systems with short-ranged
forces. Here, a simple realization of the neutral wall is
an Ising strip of width L, where the surface spins are fixed
to be up and down each over a distance H1. Single step
condensation between predominately down-spin (analo-
gous to gas) and up-spin (liquid) phases, occurs at zero bulk
field, h ¼ 0, rounded over a scale Oðe−γL=kBTÞ, while
bridging occurs away from h ¼ 0 (except at the triple
point) and is rounded over a scale Oð1=LH1Þ [26].
Interfacial wandering in all three phases leads to similar
mesoscopic corrections to those predicted for dispersion
forces. These can be determined using random walk
arguments and interfacial models [27–29]. For the gas
phase, the entropic repulsion of the interfaces that bound

FIG. 3. DFT results determining the triple point for the
maximum contrast slit with H1 ¼ H2 ¼ 40σ and slit width
L ¼ 48σ. The graph shows that the grand potential (per
unit length, over one cell and in units ε of the fluid-fluid
potential strength [25]) as a function of the undersaturation
[δμ ¼ ðμsat − μÞ=ε] for the gaslike, liquidlike, and bridge con-
figurations all intersect at a value of the chemical potential close
to, but slightly away from bulk saturation. The triple point aspect
ratio aT ¼ 1.2, below which Cassie’s law breaks down, is slightly
above the macroscopic prediction aT ¼ 1 in accordance with
Eq. (11).

FIG. 4. Equilibrium density profiles (over one period) for coexisting states at the triple point for a maximum contrast slit with
H1 ¼ H2 ¼ 40σ and L ¼ 48σ. Left and right correspond to gaslike and liquidlike phases for which liquid droplet and gas bubbles are
visible, while the center plot corresponds to the bridge state with a near flat meniscus.
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the liquid drops from the walls leads to a partition function
(per unit cell and at h ¼ 0) given by Zg ≈ e−2γH1=kBT=H3

1

and similarly for the liquid phase. For the bridge, on the
other hand Zb ≈ e−2γL=kBT=L arising from the wandering of
the two near flat menisci. Balancing the free energies
determines that a pseudo triple point occurs at h ¼ 0 when
the aspect ratio is aT ≈ 1þ ðkBT=γÞðlnL=LÞ. This may be
checked numerically and may even be amenable to exact
analysis [30–33].
In this Letter, we have shown that the locations of one-

step and two-step capillary condensation in patterned slits
are described by Kelvin equations involving three possible
contact angles, only one of which is the Cassie angle θcas
for which we give an explicit geometrical interpretation.
However, for narrow slits Cassie’s law is broken and
two-step condensation is characterized by different angles
which arise from meniscus pinning. The pinning
associated with these angles not only determines the
phase equilibria but will also have a strong influence
on metastability relevant to experimental studies and may
well underpin the phenomena of contact angle hysteresis.
Mesoscopic Derjaguin-like corrections are significantly
larger than those for condensation in homogenous slits
and are predicted in both two and three dimensions.
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FIG. 5. DFT results of the triple point aspect ratio of a
maximum contrast slit for increasing slit width (in units of σ)
showing the approach to the macroscopic result aT ¼ 1. The inset
shows that the mesoscopic result (11) is accurate down to
molecularly narrow slits with L ≈ 15σ.
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