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Marangoni instabilities can emerge when a liquid interface is subjected to a concentration or temperature
gradient. It is generally believed that for these instabilities bulk effects like buoyancy are negligible
compared to interfacial forces, especially on small scales. Consequently, the effect of a stable stratification
on the Marangoni instability has hitherto been ignored. Here, however, we show that they can matter. We
report, for an immiscible drop immersed in a stably stratified ethanol-water mixture, a new type of
oscillatory solutal Marangoni instability that is triggered once the stratification has reached a critical value.
We experimentally explore the parameter space spanned by the stratification strength and the drop size and
theoretically explain the observed crossover from levitating to bouncing by balancing the advection and
diffusion around the drop. Finally, the effect of the stable stratification on the Marangoni instability is
surprisingly strongly amplified in confined geometries, leading to an earlier onset.
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A concentration or temperature gradient applied to an
interface can induce a Marangoni instability of the motion-
less state, resulting in a steady convection. Similarly, the
steady state Marangoni convection can undergo another
instability, leading to an oscillatory motion [1]. Since the
first quantitative analysis in 1958 [2], Marangoni insta-
bilities have been studied extensively due to their relevance
for liquid extraction [3–7], coating techniques [2,8,9],
metal processing [10–12], and crystal growth [13–19],
among others. Marangoni instabilities are also the main
mechanism to drive the self-propulsion of active drops
[20–26], which have attracted much interest recently. Such
drops are an example of the rich physicochemical hydro-
dynamics of droplets far from equilibrium [27] that are very
relevant for applications such as food processing [28,29]
and modeling biological systems [25].
Depending on the application, Marangoni instabilities

have been investigated in different configurations, e.g., a
horizontal interface between two fluid layers [1–3,30–36],
the surface of a falling film on a tilted plate [9,37–40], and a
vertical interface of a liquid column [13–19], as well as for
drops submerged in a solution [20–26,28,29,41–43]. In
many of these situations, these systems are subjected to a
stabilizing temperature or concentration gradient [9,13–19,
31,32,34,35], which induces a stable density stratification.
However, except for a few cases for the horizontal interface
configuration [44–46], the effect of such a stable density
stratification on Marangoni convection has always been
ignored due to the generally accepted view that on small

scales bulk effects like buoyancy are negligible [47]. Here
we report that, for an immiscible drop immersed in an
ethanol-water mixture, the stable stratification could
actually trigger an oscillatory instability once it is above
a critical value. Surprisingly, this critical value will
decrease in a confined geometry, implying that the effect
of the stable stratification is actually amplified on small
scales. Our findings demonstrate that stable stratifications
can strongly affect Marangoni convections and call for
further studies in related geometries.
To determine the onset of the Marangoni instability, we

experimentally explore the parameter space spanned by
the concentration gradient and the drop radius R. Using
the double-bucket method [48], linearly stratified liquid
mixtures are prepared in a cubic glass container (Hellma,
704.001-OG, Germany) with an inner width ofL ¼ 30 mm,
filled to different depths depending on the degree of
stratification. The ethanol weight fraction we at each height
is measured by laser deflection [49,50], from which the
gradient of ethanol weight fraction dwe=dy is calculated.
The concentration gradient dwe=dy is varied from ∼3 to
∼130 m−1, corresponding to density gradients ranging from
−480 to −4200 kg=m4. 5 cSt silicone oil (Sigma-Aldrich,
Germany) is injected through a thin needle (with an outer
diameter of 0.515 mm) to generate drops of different radiiR.
The drops are released from the top of the stratifiedmixtures,
and their trajectories are recorded by a sideview camera.
During the measurements, only one single drop exists in
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the container at a time. The silicone oil has density ρ0 ¼
913 kg=m3 and viscosity μ0 ¼ 4.6 mPa · s.
Two typical behaviors are observed after the initial

sinking phase. See Fig. 1(a) for the successive snapshots
of two silicone oil drops in a mixture with dwe=
dy ≈ 5 m−1. While a smaller drop (R ¼ 69� 2 μm) stays
at a fixed position around h ≈ 8.7 mm, a larger drop
(R ¼ 454� 2 μm) bounces continuously in the range
0 mm < h < 3 mm. Here h ¼ 0 marks the position where
the density of the oil (ρ0 ¼ 913 kg=m3) equals that of the
mixture (at we ≈ 49%). The drop’s position hðtÞ as a
function of time t in the same stratified liquid and the
ethanol weight fraction we at the corresponding height are
respectively shown in Fig. 1(b) and 1(d). The smallest drop
(R1 ≈ 44 μm) is levitating at h ≈ 9.1 mm. As the drop size
increases, it levitates at a lower position, until above a
critical radius Rcr it starts to bounce instead of levitating.

If its size is further increased, the drop bounces around a
lower position (but still with h > 0).
The smaller drops are able to levitate above the density-

matched position h ¼ 0 against gravity because of a stable
Marangoni flow around it, as shown in Fig. 1(c). The flow
field is obtained by particle image velocimetry measure-
ments for a drop levitating in the gradient dwe=dy ≈ 5 m−1.
The interfacial tension of the drop σ decreases with
increasing ethanol concentration of the mixture we, as
shown in Fig. 1(f). This interfacial tension gradient at the
drop’s surface pulls liquid downward, generating a viscous
force acting against gravity that levitates the drop. When
the drop becomes large enough, however, the Marangoni
flow becomes oscillatory, and the drop starts to bounce
between two different levels. Thus, the transition from a
levitating drop to a bouncing one signals the onset of the
(oscillatory) instability of the Marangoni flow. Though the
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FIG. 1. Bouncing and levitating drops in a linearly and stably stratified mixture of ethanol (lighter) and water (heavier). (a) Snapshots
of two 5 cSt silicone oil drops at the given time after they were released in the mixture. The larger drop bounces at h < 3 mm, while the
smaller drop is levitating at a higher position h ≈ 8.7 mm. The snapshots are taken from one experiment with two drops. To better show
them, the upper and lower halves of the snapshots are shown with different scales. (b) Drop height h as function of time t for different
drop radii R after the initial sinking period. h ¼ 0 is the position where the density of the drop equals that of the mixture. The filled
circles represent the relative size of the drops. (c) Flow field around a levitating drop (R ¼ 31� 1 μm), measured by particle image
velocimetry, in a mixture with dwe=dy ≈ 5 m−1. The resolution is not high enough to resolve the velocity close to the drop’s surface.
(d) The ethanol weight fraction we at the corresponding height, with dwe=dy ≈ 5 m−1. (e) A sketch of the levitating drop (with radius R
and density ρ0) and the ethanol concentration around it. Deeper red means higher ethanol concentration. The shaded ring inside the
dashed circle represents the kinematic boundary layer with thickness δ, set by the Marangoni velocity VM. The ethanol concentration
inside this layer is enhanced and homogenized by Marangoni advection bringing down the ethanol-rich liquid. The Marangoni flow is
represented by the solid arrows. Dashed arrows represent diffusion across this layer. ρ is the representative density inside this layer, and
ρ� is the undisturbed density in the far field. μ and μ0 are the viscosities of the mixture and the drop, respectively. (f) Interfacial tension
σðweÞ between 5 cSt silicone oil and the ethanol-water mixture. Each point is an average of six measurements, and the error bar is the
standard deviation. The solid line is a polynomial fit to the data points.
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oscillatory Marangoni flow around a bubble or drop
[51–54] and consequently the continuous bouncing of a
drop [50] have been observed, the stable state of the
Marangoni flow was not discovered. Thus, the underlying
physics of these phenomena—the oscillatory Marangoni
instability—has not been revealed until this work.
We then explore the parameter space by using the

following criterion to determine whether a drop is bouncing.
If the drop’s bouncing amplitudehA is larger than its radiusR,
then the drop is considered to be bouncing. Such a criterion
induces a negligible measurement error (see Supplemental
Material [55] for more details). The results are shown in
Fig. 2. Surprisingly, while for weak gradients (like for
dwe=dy ≈ 10 m−1) there is a critical radius Rcr (≈80 μm)
above which the Marangoni flow becomes unstable, the
Marangoni flow is always unstable for stronger gradients
dwe=dy > 23 m−1 in all performed experiments. Note that
for larger drops (R > 0.1 mm), we could not explore the full
parameter space for dwe=dy < 3 m−1 since it would require
an unrealistically large container.
To get a better understanding of the onset of this

Marangoni instability, the key is to understand the coupling
between the Marangoni flow and the concentration field.
The Marangoni flow is induced by the ethanol (solute)
concentration gradient around the drop, which is subjected
to change by advection (caused by the Marangoni flow
itself) and diffusion [see the sketch in Fig. 1(e)]. The
Marangoni flow tends to homogenize the ethanol concen-
tration around the drop, thus weakening the Marangoni
flow force and thus itself. At the same time, diffusion acts
to restore the ethanol gradient in the vicinity of the drop to its
undisturbed value, i.e., the value it takes in the far field. This
competition between advection and diffusion around the
drop determines whether theMarangoni flow is stable or not.
Furthermore, once it becomes unstable, a temporarily strong
Marangoni flow homogenizes the concentration field around

the drop, consequently weakening itself. Later the
Marangoni flow restarts once diffusion has restored the
concentration field around the drop, so that the flow is
oscillatory and leads to the continuous bouncing of the drop.
The liquid layer whose concentration is affected by

the Marangoni advection is effectively the Marangoni
flow boundary layer with thickness δ [see Fig. 1(e)].
The timescale for advection to change the concentra-
tion in this layer is the time needed for the Marangoni
flow to bring down the ethanol-rich liquid from the top:
τa ∼ R=VM, where VM is the Marangoni flow velocity at
the equator of the drop. For the drop in the concentration
gradient, it holds that VM ∼ −dσ=dy · R=ðμþ μ0Þ [55,62].
The timescale for diffusion to restore the concentra-
tion across this layer is τd ∼ δ2=D, where D is the
diffusivity of ethanol in water. The flow will become
unstable when advection is faster than diffusion, τa < τd.
Substituting the two timescales into this relation, we
obtain VMR=D > R2=δ2. The left-hand side has the form
of a Péclet number, which is the ratio between advection
and diffusion and which in problems of this type is referred
to as the Marangoni number

Ma ¼ VMR
D

¼ −
dσ
dwe

dwe

dy
R2 ·

1

ðμþ μ0ÞD ; ð1Þ

where we have used the above expression for VM with an
equal sign and where dσ=dwe is a material property [see
Fig. 1(f)] and dwe=dy the undisturbed ethanol gradient of
the mixture. The instability criterion thus is

Ma > R2=δ2: ð2Þ

The liquid within the boundary layer is lighter than its
surroundings as it is entrained from the top, and it is held in
place by the Marangoni induced viscous stress against
buoyancy:

μ
VM

δ2
∼ gΔρ; ð3Þ

where Δρ ¼ ρ� − ρ is the density difference between
the liquid inside and outside of the kinematic boundary
layer [see Fig. 1(e)]. The lighter liquid is brought down
by the Marangoni flow along the drop’s surface, so
Δρ ∼ −R · dρ=dy. Canceling δ from Eqs. (2) and (3), we
obtain the instability criterion

Ma=Ra1=2 > c; ð4Þ

where

Ra ¼ −
dρ
dy

·
gR4

μD
ð5Þ

dw
e
/dy (m-1)

100 101 102
10-2

10-1

100

R
 (

m
m

)

Levitate
Bounce

FIG. 2. Phase diagram of the levitating and bouncing drops in
the parameter space of drop radius R vs concentration gradient
dwe=dy. Black triangles stand for bouncing drops, red circles
for levitating ones. Measurement errors in the x direction are
comparable to the size of the symbols.
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is the Rayleigh number for characteristic length R and c is a
constant to be determined.
To calculate the Marangoni and Rayleigh numbers,

ethanol weight fractions at the positions where the drops
levitate are used to obtain the viscosity μ, diffusivityD, and
the interfacial tension σ (see Supplemental Material [55] for
the concentration dependence of μ andD). In the following,
for bouncing drops, we use values corresponding to their
lowest position.
The phase diagram shown in Fig. 2 is replotted with

Ma=Ra1=2 vs Ra in Fig. 3(a). It clearly shows that there is
indeed a critical value ðMa=Ra1=2Þcr above which the
drop will always bounce, and the instability threshold c
in Eq. (4) is measured to be c ¼ 275� 10 in the range
6 × 10−3 ≲ Ra≲ 3. We cannot carry out experiments for
Ra < 6 × 10−3 because drops with R < 20 μm are too
small to observe. For experiments in the range Ra > 3 [see
Fig. 3(a)], the finite size of the container comes into play.
However, we speculate that c ≈ 275 still holds for Ra > 3

as long as the container is large enough. The existing data
on bouncing are consistent with this value.
We now express our stability criterion Eq. (4) in dimen-

sional quantities by substituting the definition of Ma and
Ra to obtain

�
dwe

dy

�
cr
¼ c2ðμþ μ0Þ2 · gD

μ

dρ
dσ

dwe

dσ
: ð6Þ

Eq. (6) actually predicts a critical concentration gradient
above which the Marangoni flow is unstable. Note that
remarkably the drop radius R does not enter into this
equation. All the fluid properties μ, D, dρ=dσ, and dwe=dσ
depend on we—the ethanol weight fraction at the levitation
height. Thus, the critical gradient ðdwe=dyÞcr as a function
of we is shown in Fig. 3(b) as the blue curve. The data
shown in Fig. 2 are also replotted in Fig. 3(b). As can be
seen, the blue curve as predicted by Eq. (6) nicely separates
the levitating drops and the bouncing ones. The dashed blue
line in the range we > 98 wt% (we < 50 wt%) corresponds
to Ra < 6 × 10−3 (Ra > 3), i.e., the region in which we
could not perform experiments.
The above results are all obtained in a large enough

container. We will now discuss the effect of a geometrical
confinement, i.e., the dependence of our findings on the
container size L. Let L denote the maximum extent of the
flow field induced by the drop. Then L > L means that the
flow is confined. In the case of no confinement, i.e., L < L,
the liquid in the far field is not disturbed by the Marangoni
flow, so that the density in the far field is maintained at ρ�
[see Fig. 1(e)]. However, when the flow is confined, i.e.,
L > L, the liquid close to the sidewall is affected by the
Marangoni flow. In such a situation, because the liquid is
pulled down in the center by the drop, the liquid close to
the wall will be pushed up due to mass conservation. This
effectively increases the density ρ�. Consequently, the
density difference Δρ ¼ ρ� − ρ is increased, which means
that the effect of buoyancy is amplified. According to
Eqs. (3) and (4), the instability threshold c will thus
decrease. Either decreasing the container size L or increas-
ing L leads to a stronger confinement effect. Since for
stable stratifications L ∼ ð−dρ=dy · μD=gÞ−1=4 [63,64],
one can thus also increase the confinement effect by
using very weak stratifications. We have performed experi-
ments for weaker gradients dwe=dy < 3 m−1 and also in a
larger container to confirm the effect of the confinement.
Indeed, for dwe=dy ≈ 2 m−1, a cubic container with L ¼
50 mm is already not large enough, and the instability
threshold is reduced to c ≈ 172. A smaller container
(L ¼ 30 mm) further decreases the threshold to c ≈ 157.
For dwe=dy ≈ 1 m−1, the geometry is more confined, and
the threshold is further decreased to c ≈ 122 in the larger
container and even to c ≈ 117 in the smaller one. The fact
that a weaker stratification leads to a more amplified effect
of buoyancy demonstrates that the stable stratification is
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FIG. 3. (a) Phase diagram replotted in dimensionless numbers:
Ma=Ra1=2 vs Ra. Black triangles stand for bouncing drops,
red circles for levitating ones. The blue line is the instability
threshold ðMa=Ra1=2Þcr ¼ 275, above which the flow is oscil-
latory and all drops bounce. The blue solid line (in the range
6 × 10−3 < Ra < 3) is confirmed by experiments. Measurement
errors in the y direction are comparable to the size of the symbols.
(b) Phase diagram replotted with dwe=dy vs we, where we is the
ethanol weight fraction at the levitation height. The blue curve is
calculated from Eq. (6) with c ¼ 275. The dashed blue line in the
range we > 98 wt% (we < 50 wt%) corresponds to Ra < 6 ×
10−3 (Ra > 3). Measurement errors are comparable to the size of
the symbols.
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very relevant for the Marangoni instability, in particular on
small scales where the confinement is more relevant.
In conclusion, we have discovered a new type of

oscillatory Marangoni instability for an immiscible drop
immersed in a stably stratified ethanol-water mixture. The
commonly ignored stable density stratification induced
by the concentration gradient is vital in triggering this
instability. Its onset is indicated by the transition from a
levitating drop to a bouncing one. By experimentally
exploring the parameter space spanned by the concentra-
tion gradient dwe=dy and the drop radius R, the instability
is found to be determined by the balance between the
advection and diffusion through the kinetic boundary layer
set by the Marangoni flow. This yields a critical concen-
tration gradient as the instability criterion. Remarkably, the
critical gradient is decreased in a confined geometry, i.e.,
the effect of the stable stratification is amplified on small
confined scales. Our findings indicate that the stable
stratification induced by the corresponding concentration
gradient is very relevant, especially in confined geometries,
and should be further explored in other geometries.
Our results for solutal Marangoni flows can also be

extended to thermal Marangoni flows. We found that a
stabilizing temperature gradient as low as 3 K=mm can
trigger a similar oscillatory instability on a bubble
immersed in water. Such a low temperature gradient is
smaller than what is occurring in various applications
[13,43,65], where a stabilizing temperature gradient can
easily go beyond 10 K=mm.
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