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We show that incoherent pumping of an optical lattice clock system with ultracold strontium-88 atoms
produces laser light with a ≃10 Hz linewidth when the atoms are exposed to a magnetic field. This
linewidth is orders of magnitude smaller than both the cavity linewidth and the incoherent atomic decay and
excitation rates. The narrow lasing is due to an interplay of multiatom superradiant effects and the coupling
of bright and dark atom-light dressed states by the magnetic field.
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Introduction.—Conventional lasers rely on optical coher-
ence established by stimulated emission from a population-
inverted medium and they have a spectral linewidth set by
the Schawlow-Townes limit [1]. In contrast, superradiant
lasers rely on coherence in the atomic gain medium,
established by the collective atom-light interaction, and
they have a minimal linewidth given by the Purcell
enhanced atomic decay rate Γc [2–6]. Recent experiments
with 88Sr alkaline earth atoms trapped in an optical lattice
inside an optical cavity, see Fig. 1(a), show that the two
lasing mechanisms may coexist in a superradiant crossover
regime [7]. Theoretical studies [8,9] suggest that lasing in
this regime benefits from both the optical and atomic
coherence, and can achieve linewidths even smaller than
Γc. To reach this regime, however, the atoms have to be
pumped very hard, which is challenging in current
experiments.
The same system was employed recently in [10] to

demonstrate magnetic field-controlled transmission of a
weak light probe. This phenomenon can be explained with
a simple model of three-coupled oscillators [10,11], but it
can also be ascribed to bright and dark atom-photon dressed
states formed by coupling three-level atoms collectively
with the optical cavity mode (see Supplemental Material
[12], Secs. S1 and S2). In this Letter, we introduce
incoherent pumping of the atoms, cf. the black solid and
dashed arrows in Fig. 1(b), and we show that an ensemble
of atoms with Zeeman-split excited states exhibits lasing
with very narrow linewidth. This lasing relies on dark
dressed states, and their influence on the lasing mechanism
is not captured in previous studies dealing with two-level
atoms [8,9], and it also differs fundamentally from the
narrower transmission relying on dark states dressed by
Raman beams [19]. Importantly, we show that the lasing is
orders of magnitude narrower than the one relying on two-
level atoms, and it can be achieved with pumping rates

compatible with current experiments. We expect that this
new lasing mechanism will find applications with both
strontium atoms [20,21] and other atoms like calcium [22]
and ytterbium [23].
The physical system.—Figure 1(b) shows the singlet

ground state 1S0, the triplet excited state 3P1, and a further
excited state employed for incoherent excitation of the
atoms. The spin-forbidden 1S0 − 3P1 transition is weakly
allowed in 88Sr atoms due to state mixing by the spin-orbit

(a)

(c) (d)

(b)

FIG. 1. Panel (a) illustrates thousands of 88Sr atoms trapped in
an optical lattice inside an optical cavity. Panel (b) shows the
ground state (1S0) and the three excited states (3P1) of the kth
atom, which are split due to a magnetic field. The atom is pumped
(black solid arrows) to the highly excited state 3S1 via the e0;k
excited state and decays rapidly (dashed arrows) to the 3P1

excited states e�;k, and returns to the ground state by spontaneous
emission (wavy arrows) or by the coherent coupling to the cavity
mode (red thin double-head arrows). Panel (c) shows the coherent
coupling to the cavity in the basis of bright and dark atomic
excited states. Panel (d) shows the symmetric states of N atoms
and the cavity field sharing a single excitation, and the corre-
sponding atom-photon dressed eigenstates, which explain the
three peaks in the transmission spectrum and in the steady-state
lasing spectrum.
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interaction [24]. In the presence of a static magnetic field,
the 3P1 level of the kth atom is split and the atom emits σ�,
π polarized light at different frequencies from the three
Zeeman eigenstates je�;ki, je0;ki. Note that both the
transitions σ� couple to the single fundamental cavity
mode with linear polarization in the horizontal direction.
The frequency of the 1S0 − 3P1 transition is ωa ¼ 2πc=λ

with the wavelength λ ¼ 689 nm, and the excited state
splitting is Δk ¼ 2π × 2.1B MHz, where the static mag-
netic field B is in units of gauss [10]. This yields the single
atom Hamiltonian Ha;k ¼

P
s¼eþ;e− ℏωs;kjskihskj, where

ωe�;k ¼ ωa � Δk=2. The coupling to the cavity mode is
given in the rotating wave approximation by Ha−c;k ¼
ℏgkðjeþ;kihgkj þ je−;kihgkjÞaþ H:c: Here and in the fol-
lowing, we assume identical atoms, i.e., Δ ¼ Δk and g ¼
gk ¼ 2π × 7.5 kHz for all atoms. The cavity mode is
described by the Hamiltonian Hc ¼ ℏωcaþa with the
frequency ωc, and creation aþ and annihilation operators
a. We ignore contributions from the excited state je0;ki
since it does not couple to the cavity mode.
We shall refer to jdki ¼ ðjeþ;ki − je−;kiÞ=

ffiffiffi
2

p
and jbki ¼

ðjeþ;ki þ je−;kiÞ=
ffiffiffi
2

p
as the dark and bright excited states

(note that jdki does not couple to the cavity mode). The
single atom-cavity interaction Hamiltonian can then be
written as Ha−c;k ¼ ℏ

ffiffiffi
2

p
gkjbkihgkjaþ H:c:, and the

atomic Hamiltonian Ha;k ¼ ℏωaðjbkihbkj þ jdkihdkjÞ þ
ℏðΔk=2Þðjbkihdkj þ jdkihbkjÞ couples the dark and bright
states via the magnetic field-induced Zeeman splitting Δk,
see Fig. 1(c). The total system is subject to the Hamiltonian
Hs ¼ Hc þ

P
kðHa;k þHa−c;kÞ, and explores a Hilbert

space composed of photon number states jni and collec-
tively excited atomic states. In the low excitation limit, the
atomic ground state jGi ¼ Q

k jgki and the collective singly
excited bright state jBi ¼ N−1=2P

k jbki
Q

j≠k jgji and
dark state jDi ¼ N−1=2P

k jdki
Q

j≠k jgji yield a series
of atom-photon dressed states, see Sec. S1 in [12]. The
lowest dressed states shown in Fig. 1(d) explain the triplet
features in the transmission experiments [10], see Sec. S2 in
[12]. In this Letter, we show that the atom-light dressed
states also lead to steady-state lasing, featuring a similar
triplet spectrum with an ultranarrow central peak.
Master equation.—To study the steady-state emission

from the system with incoherently pumped atoms, we
employ the Lindblad master equation, which also accounts
for photon loss and atomic spontaneous emission (see
Sec. S3 of [12]):

∂
∂t ρ ¼ −

i
ℏ

�

Hc þ
X

k

ðHa;k þHa−c;kÞ; ρ
�

− κD½a�ρ

−
X

k

γkðD½Ak
gb�ρþD½Ak

gd�ρÞ

−
X

k

ηkðD½Ak
bg�ρþD½Ak

dg�ρÞ: ð1Þ

Here, for notational purposes, we have introduced the
atomic operators Ak

st ¼ jskihtkj (s, t ¼ g, b, d). The dis-
sipation superoperator D½o�ρ ¼ foþo; ρg=2 − oρoþ with
different operators o, describes the cavity loss with the rate
κ ¼ 2π × 150 kHz, the atomic spontaneous emission with
rate γ ¼ γk ¼ 2π × 7.5 kHz, and the incoherent atomic
excitation with rate η ¼ ηk, obtained, e.g., via excitation
of higher short-lived excited states, see Fig. 1(b) and
Sec. S4 in [12]. We ignore the negligible pure dephasing
of the atoms in the optical lattice clock system.
To solve the master equation for thousands of atoms, we

utilize a cluster expansion approach [25] equivalent to a
second-order mean-field theory [2,9]. In this approach, we
employ the equation ∂hoi=∂t ¼ trfo∂ρ=∂tg for the expect-
ation value hoi ¼ trfoρg of any observable o of interest,
and use Eq. (1), to express the right hand side in terms of
mean values of other observables, see Sec. S3 of [12]. It
turns out that the mean photon number in the cavity haþai
couples to the atom-photon correlations haAk

sti, which in
turn couple to the atom-atom correlations hAk

stAk0
s0t0 i (k ≠ k0)

and third-order correlations such as haþaAk
sti. To

truncate the hierarchy of equations, we approximate third-
order quantities with products of lower-order terms,
e.g., haþaAk

sti ¼ haþaihAk
sti þ haþihaAk

sti þ haþAk
stihai−

2haþihaihAk
sti, resulting in closed nonlinear equations.

Assuming identical properties for all atoms, we note that
hAk

sti and haAk
sti are the same for all k, and hAk

stAk0
s0t0 i are

identical for all pairs (k, k0). This allows us to reduce the
number of independent elements to 102. Since we do not
inject a mean field into the system, the mean values of the
cavity field annihilation operator hai and the atomic
transition operators hAk

sti (s ≠ t with s ¼ g or t ¼ g) vanish
for all times and thus the set of equations is further reduced.
All relevant mean values can thus be readily found numeri-
cally. By applying second-order mean field theory, we
incorporate manifestly nonvanishing correlations while we
do not rely on the spontaneous symmetry breaking ansatz
in first-order mean field theory. Higher-order corrections to
the theory are expected to be negligible [26] in the limit of
many atoms, and the approach has, indeed, been applied to
study steady-state superradiance [3] and Dicke superra-
diance phase transition [27] with two-level atoms, where it
has also been validated by comparison with exact results for
finite systems.
Magnetic field-controlled superradiant lasing.—We

solve the equations for atoms that are continuously pumped
to the excited states with the rate η, e.g., by excitation of the
short-lived higher excited state in Fig. 1(b). Figures 2(a)
and 2(b) show the dependence of the system steady state on
η for a finite Zeeman coupling Δ=2π ¼ 0.3 MHz. Figure 2
(a) shows that the steady-state population of the atomic
ground state (black solid line) and the dark excited state
(blue dotted line) decrease and increase with increasing η,
while the bright excited state population (red dashed
line) first increases and then decreases when η > γ.
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The coherence between the bright and dark excited state
(green dot-dashed line) first vanishes and then shows a
thresholdlike behavior at η ¼ γ. Figure 2(b) shows that the
correlations between different atoms also start increasing
for η > γ for the bright transitions (black solid line), the
dark transitions (red dashed line), and different transitions
(blue dotted line). The former correlations reflect the
collective coupling of the bright atomic transitions with
the cavity mode, while the latter ones reflect the cavity-
mediated interaction between the bright and dark transi-
tions. In the absence of the Zeeman coupling, the
correlations involving the dark states vanish (not shown).
The collective excitations of an ensemble of two-level

systems can be described by Dicke states jJ;Mi [28],

where J and M ¼ −J;…; J represent the eigenvalues of
collective spin operators associated with the two-level
systems. The energy levels of the Dicke states for a given
J form a vertical ladder with equal spacing (equal to the
transition energy), and the states with different J can be
shown as shifted vertical ladders forming a triangle pattern.
Here, we adapt this concept to three-level systems by
treating the bright bk → gk and dark dk → gk transitions as
separate two-level transitions and then calculating the mean
values Js, Ms (s ¼ b, d) for the pseudo Dicke states
jJs;Msi, see Sec. S5 of [12] for more details.
Figure 2(c) compares the evolution of the ensemble

excitation with increasing pumping η for the system with-
out (left) and with (right) the Zeeman coupling (magnetic
field). We see that as η increases, the bright transition
explores (red dots) the lower rung of subradiant Dicke
states but terminates at the states with Jb,Mb ≈ 0 due to the
balanced stimulated absorption and emission, while the
dark transition does not undergo these processes and thus
explores (green dots) also states with Jd ≥ Md > 0 for
η > γ. As these excited states do not couple to the cavity,

(a) (b)

(c) (d)

FIG. 3. Magnetic field-controlled subradiance, superradiance,
and superradiant lasing. Panels (a) and (b) show the normalized
steady-state spectra for increasing pumping η (relative to the
decay rate γ), without (Δ ¼ 0) and with Zeeman coupling
Δ=2π ¼ 0.3 MHz for systems with N ¼ 2.5 × 105 atoms [note
that in the upper panel of (b) the frequency scale is in Hz]. (c) and
(d) show the emission linewidth of the systems without and with
Zeeman coupling as function of η=γ (N ¼ 2.5 × 105), and
number of atoms N (η=γ ¼ 5), respectively. In panel (c), the
black dots and the red curves are the accurate results and those
calculated with Eq. (2), respectively, and the black horizontal
dotted line indicates the Purcell rate Γc. Other parameters are
specified in the text.

(a) (b)

(c) (d)

FIG. 2. Dependence of the steady state of 2.5 × 105 atoms on
the atomic excitation rate η (relative to the decay rate γ). Panel
(a) shows the population hAk

ggi (black solid line), hAk
bbi (red

dashed line), hAk
ddi (blue dotted line) of the ground state, the

bright excited state and the dark excited state, respectively, as
well as the imaginary part of the bright-dark state’s coherence
hAk

bdi (green dot-dashed line). Panel (b) shows the correlations
hAk

gbA
k0
bgi (black solid line), hAk

gdA
k0
dgi (red dashed line), and

ImhAk
gdA

k0
bgi (blue dotted line) of the atoms (k ≠ k0) related to the

dark and bright transitions. In panels (a) and (b) the Zeeman
splitting is Δ=2π ¼ 0.3 MHz. Panel (c) shows a representation of
the multiply excited atomic states by pseudo-Dicke collective
quantum numbers Js, Ms of the bright s ¼ b (red dots) and dark
s ¼ d (green dots) transition for increasing η (arrows) for the
system with Δ ¼ 0 (left) and Δ ¼ 2π × 0.3 MHz (right). The
results are shifted for clarity and the dashed lines indicate the
boundaries of each triangle of Dicke ladders. Panel (d) shows the
intracavity photon number as a function of η for different values
of the Zeeman coupling Δ. Other parameters are specified
in the text.
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they are spectators to the system dynamics. When we
include the magnetic field, however, they will couple to the
cavity field via the bright states and give rise to narrow-
linewidth lasing (see below).
The excited atomic ensemble releases its energy by

emitting photons into the cavity, see Fig. 2(d). There are
abundant studies on the superradiance and superradiant
lasing by atoms with only a single excited state [2–5], but
less effort is devoted to the radiation from the atoms with
two or more excited states. Figure 2(d) verifies that in the
absence of Zeeman coupling Δ ¼ 0, the three-level atoms
behave like two-level systems as expected since the dark
atomic excited state couples with neither the bright atomic
excited state nor the cavity mode. As discussed in
Refs. [9,29], this system undergoes transitions from sub-
radiance to superradiance and finally to superradiant lasing
as the pumping strength η overcomes the Purcell enhanced
decay rate Γc ¼ 4g2=κ ¼ 2π × 1.5 kHz and the atomic
decay rate γ, respectively, see the lower curve in Fig. 2
(d) for Δ ¼ 0. In contrast, by introducing a finite Zeeman
coupling Δ, the intracavity photon number changes sig-
nificantly. In particular, for strong pumping η > γ, a finite
value of Δ makes the photon number increase by about a
factor of 10. More importantly, the Zeeman coupling has
dramatic influence on the lasing spectrum.
The spectrum of radiation can be determined by applying

the quantum regression theorem to the system master
equation, but it can also be computed by coupling the
cavity output to a narrow-linewidth filter cavity. In the latter
case, the spectrum corresponds to the photon number in
that cavity as a function of its frequency, which can be
calculated easily with the cluster expansion method [9], see
Secs. S6 and S7 of [12]. Figure 3(a) shows the emission
spectrum for a system with 2.5 × 105 atoms in the absence
of Zeeman coupling Δ ¼ 0. For weak pumping, the two
peaks in the spectrum can be attributed to transitions
between the lowest bright dressed states and the ground
state in Fig. 1(d). For stronger pumping, the peaks approach
each other and ultimately merge into a single peak. This
behavior occurs because the atomic ensemble explores the
collective Dicke-like states with a lower symmetry (lower
Js) for stronger pumping, and hence experiences a reduced
effective collective coupling with the cavity mode, see
Fig. 2(c) and Refs. [9,30,31].
Figure 3(b) shows that by introducing the finite Zeeman

coupling Δ=2π ¼ 0.3 MHz, we modify the spectrum
significantly. For weak pumping η, we find a new peak
in the spectrum around the cavity mode frequency, which
can be attributed to the transition between the dark dressed
state and the ground state in Fig. 1(d). As η increases, the
side peaks become weaker while the center peak gets
stronger and more narrow. For more results on the influence
of Δ, see Fig. S4(a) of [12]. We note that the Dicke state
evolution of the dark and bright atomic transitions is very
similar for systems with and without Zeeman coupling, see

Fig. 2(c), but the weak Zeeman coupling permits release of
the energy of the dark excited states as light with an
ultranarrow spectrum.
The effect of the Zeeman coupling is striking in Fig. 3(c),

where we compare the spectrum linewidth for the system
with Zeeman coupling Δ ¼ 0 (upper black dots) and
Δ=2π ¼ 0.3 MHz (lower black dots). Here, we consider
pumping rates η > γ so that there is only a single dominant
peak in the spectrum. Remarkably, with increasing η, the
linewidth decreases to nearly 2π × 10 Hz for Δ ≠ 0, which
is orders of magnitude smaller than 2π × 4 kHz obtained
for Δ ¼ 0. This linewidth is also orders of magnitude
smaller than the atomic decay rate of 2π × 7.5 kHz, the
pumping rate of (up to) 2π × 37.5 kHz, the cavity loss rate
of 2π × 150 kHz and the Purcell decay
rate Γc ¼ 2π × 1.5 kHz.
To characterize the origin of the ultranarrow lasing, we

have derived a semianalytical expression:

Γ ¼ κ − θ½ðγ þ 2ηÞðhAk
bbi − hAk

ggiÞ − ΔImhAk
dbi�

2þ θðhAk
bbi − hAk

ggiÞ
; ð2Þ

with the parameter θ ¼ 8Ng2=½ðγ þ 2ηÞ2 þ Δ2�, see
Sec. S8 of [12]. Figure 3(c) shows that Eq. (2) (red curves)
reproduces the accurate numerical results (black dots) very
well. Equation (2) indicates that in the absence of
Zeeman coupling Δ ¼ 0 the linewidth depends only on the
population inversion hAk

bbi − hAk
ggi > 0 between the bright

excited state and the ground state, while for Δ ≠ 0 it
depends crucially on the coherence hAk

dbi between the
bright and dark excited state. For the optimal pumping rate
η and Zeeman coupling Δ, we observe an almost perfect
cancellation of these contributions in the numerator of
Eq. (2), leading to the ultranarrow spectrum, see Fig. S4(c)
in [12].
For weak pumping, the spectrum is explained by the

three atom-light dressed states formed by the singly excited
states of the atom-cavity system, see Fig. 1(d), and it is
consistent that for strong pumping, the ultranarrow spec-
trum is due to the atom-light dressed states formed by the
highly excited states of the system. It is difficult to
definitely discern the role of superradiant and collective
effects, but we recall from our introduction that super-
radiant lasing exploits the coherence stored both in the gain
medium and in the cavity field, and hence one would expect
a reduction of the linewidth as function of increased atom
number N, similar to the Schawlow-Townes linewidth
scaling as 1=n̄ with the mean photon number n̄ in the
conventional laser model. In Fig. 3(d) we show the
spectrum linewidth as function of N for the pumping
η=γ ¼ 5 and the Zeeman splitting Δ=2π ¼ 0, 0.3 MHz.
For N > 103 and Δ=2π ¼ 0.3 MHz, we indeed observe a
drastic reduction of the linewidth, which approaches a few
Hz and is orders of magnitude smaller than that for Δ ¼ 0.
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In Sec. S9 of [12], we find that the lasing frequency
partly follows variations in the cavity resonance frequency.
To avoid broadening of the lasing spectrum due to this
cavity-pulling effect, it is thus necessary to stabilize the
cavity mode frequency to the same order of magnitude as
the desired lasing signal.
Conclusion.—We have presented a novel scheme for

superradiant lasing based on atom-photon dressed states,
which are formed by dark atomic excited state and cavity
photon states and populated by incoherent atomic excita-
tion. The energy in these states is released to the cavity
mode by a magnetic field-induced Zeeman coupling to the
bright atomic excited states. The linewidth of the radiation
is governed by the dark states and is therefore orders of
magnitude more narrow than for the superradiant lasing
based on (bright) two-level transitions.
We have employed a cluster expansion approach and

analytical approximations to the problem, and we note a
resemblance between our lasing mechanism and lasing
without inversion [32]. This includes, see Sec. S10 of
[12], the presence of strong coupling that leads to both
well-separated dressed states and coherence in the
system and to probe field amplification due to transitions
among the dressed states. In our system, the dark and
bright dressed states are formed due to the collective
coupling to the quantized cavity field and the Zeeman
coupling, and the incoherent atomic pumping drives the
population and coherence dynamics and hence the
emission by the system. We also see a possibly fruitful
connection to the observation of undamped eigenmodes
in coupled systems subject to gain and loss [33,34]. The
analyses of these systems may inspire analytical
approaches that incorporate both the dark state mecha-
nism and multiatom collective effects and they may
stimulate search for further applications of the mecha-
nisms reported here.
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