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We study the properties of an impurity immersed in a weakly interacting Bose gas, i.e., of a Bose
polaron. In the perturbatively tractable limit of weak impurity-boson interactions many of its properties are
known to depend only on the scattering length. Here we demonstrate that for strong (unitary) impurity-
boson interactions all quasiparticle properties of a heavy Bose polaron, such as its energy, its residue, its
Tan’s contact, and the number of bosons trapped nearby the impurity, depend on the impurity-boson
potential via a single parameter characterizing its range.
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The study of impurities in Bose and Fermi gases is an old
and important subject [1–6]. When a distinguishable atom
is added to the gas, the impurity gets dressed by excitations
in the bath and forms a quasiparticle often referred to as a
polaron. Polarons in ultracold Fermi gases, both weakly
and strongly interacting, have been studied for over a
decade and a half [7–16]. The study of polarons in Bose
gases picked up relatively recently, with the cases of neutral
[17–35], Rydberg [36–39], and charged impurities [40–45]
studied in the literature. Effects of finite temperature have
also been carefully examined [32,46–52]. Here we point
out that an impurity added to a weakly interacting three-
dimensional Bose gas at zero temperature exhibits universal
features which depend very weakly on the details of the
interaction potential (see Fig. 1). Quite remarkably, we
prove that the main features of Bose polaron can be
calculated analytically even when the impurity interacts
strongly, in the so-called unitary limit, with an otherwise
weakly interacting Bose gas.
We consider a weakly interacting Bose gas made of

atoms of massm with density n0. Trading the density n0 for
the chemical potential μ, we denote by EðμÞ the energy cost
of introducing a single impurity to the gas kept at this
chemical potential. An impurity traps or repels extra bosons
in its vicinity. It is possible to show that the number of
trapped bosons is [41]

N ¼ −∂E=∂μ: ð1Þ

Our main goal is to calculate E, thus also determining the
number of trapped bosons according to Eq. (1). In this work
we limit ourselves to zero temperature.
To describe a single heavy impurity, we can think of it as

a radially symmetric potential UðrÞ it induces on the gas.
The Hamiltonian H of the gas with an infinitely massive
impurity is given by (throughout we set ℏ ¼ 1)

H ¼
Z

d3x

�∇ψ̄∇ψ

2m
þ ½UðrÞ − μ�ψ̄ψ þ λ

2
ðψ̄ψÞ2

�
; ð2Þ

where m is the mass of the bosons. For mobile impurities
with massM, in the latter equation we could replacemwith
the reduced massmr ¼ mM=ðmþMÞ [4,33,34]. However,
to simplify equations, we will limit ourselves to the case
M ≫ m, so thatmr ¼ m. The coupling constant λ is related
to the scattering length aB > 0 characterizing interactions
among bosons by λ ¼ 4πaB=m. The gas we consider here is
weakly interacting, which is well known to imply that

n0a3B ≪ 1: ð3Þ

The chemical potential μ can be used to define the healing
length ξ of the gas according to

FIG. 1. Polaron energy E at unitarity obtained numerically from
various impurity-bath potentials tuned to their first unitary point:
square well (sw), Gaussian (gs), and shape resonant (sr∞ and srsw,
which are, respectively, infinite and finite ranged; both have
re ¼ 0) [53]. Plot as a function of δ1=3 ¼ ðR=ξÞ1=3 in units of
Eξ ¼ ξn0=ð2mÞ. The dot-dashed black line is our analytic result,
Eq. (18). The inset presents a sketch of the potentials UðyÞ.
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μ ¼ 1=ð2mξ2Þ: ð4Þ

In a weakly interacting Bose gas μ ¼ λn0, and the condition
for weak interactions can be rewritten as

ξ ≫ n−1=30 ≫ aB; ð5Þ
where n−1=30 is the mean interparticle spacing in the gas.
Suppose the impurity-bath potential UðrÞ is character-

ized by a scattering length a. It has been known for quite
some time that, for small enough jaj, the polaron energy
and the number of trapped bosons are given by

E ¼ 2πn0a=m; N ¼ −a=ð2aBÞ: ð6Þ

For an attractive potential E < 0 and N > 0, since a < 0.
The results in Eq. (6) are well known, yet it has not been

known how small jaj should be in order for it to hold, nor
has it been known what it gets replaced by as the potential
is made progressively more attractive toward the unitary
point 1=a ¼ 0. Here we show that the appropriate con-
ditions, as well as all polaron quasiparticles at unitarity, can
be stated in terms of the range of the potential R. While it
might be intuitively clear what the range of the potential
represents, we need to define R precisely. In our context,
this will be done using the following construction. Consider
the zero energy Schrödinger equation,

−
Δψ0

2m
þUψ0 ¼ 0; ð7Þ

with the potential U tuned to unitarity (for example, by
varying its amplitude). Its solution ψ0 must go as 1=r at
large distances, at least for potentials which vanish faster
than 1=r2. Let us normalize the solution by demanding that
rψ0 → 1 as r goes to infinity. We now define R as

R≡
�Z

d3x
4π

jψ0j4
�−1

: ð8Þ

For potentials with a finite extent, R can be shown to be
close to their physical range. Often R is also not far
from the usual “effective range” re characterizing
low-energy two-body scattering. For example, for a
unitary square well of width rc one has re ¼ rc and
R=rc ¼ 4=½2πSiðπÞ − πSið2πÞ� ≈ 0.557, where SiðxÞ is
the “sine integral.” We will return to this important
point below.
It turns out, as we will show, that for the purpose of

solving the polaron problem the potentials can be split into
those which satisfy the following condition,

R ≫ aBðn0a3BÞ1=4; ð9Þ

and those which do not. In a weakly interacting bath aB is
of the order of the range of the interaction potential among

bath particles, and the latter is expected to be comparable to
the range of the interactions with the impurity, so that
R ∼ aB. Taking into account the condition (3), Eq. (9) is
generally comfortably fulfilled in the atomic gases of
interest here [54,55]. Note that this still implies R ≪ ξ
thanks to Eq. (5).
With this setup in place, we now present our results for

interacting impurities satisfying Eq. (9). The expression (6)
is only valid if

jaj3 ≪ ξ2R: ð10Þ

As the potential U grows more attractive, jaj grows. When
the condition (10) is violated, Eq. (6) breaks down. Exactly
at unitarity where a ¼ ∞, and in the limit R ≪ ξ, the
energy of the polaron and the number of bath bosons in its
dressing cloud can be found analytically and are given by

E ¼ −
3πn0ξ
m

ðR=ξÞ1=3; N ¼ 4πn0ξ3ðR=ξÞ1=3: ð11Þ

These constitute the most important results of this Letter. N
follows from E in accordance with Eq. (1), where ξ and n0
have to be traded for μ before differentiating. These results
constitute the leading asymptotics of the solution when
R=ξ ≪ 1. Systematic higher order corrections to Eq. (11)
are discussed below.
To obtain these results we treat the Hamiltonian (2)

classically and solve the mean-field time-independent
Gross-Pitaevskii (GP) equation instead of working with
the fully quantum problem. One might worry that the GP
equation is applicable only far away from the impurity
where the condition (3) holds, but not nearby an attractively
interacting impurity, where the local density of the gas nl is
substantially higher than n0. Wewill see later, however, that
at unitarity nl ¼ n0ðξ=RÞ4=3; thus the condition nla3B ≪ 1
is equivalent to Eq. (9) which, as we already discussed, we
expect to hold true.
The GP equation reads

−
Δψ
2m

þ Uψ þ λjψ j2ψ ¼ μψ : ð12Þ

Given the solution of this equation ψ , the energy of the
polaron can be deduced by the substitution of it into Eq. (2)
and subtracting the energy of the condensate without
impurity, to give

E ¼ −
λ

2

Z
d3xðjψ j4 − n20Þ: ð13Þ

At the same time, the number of particles trapped in the
polaron can be found by evaluating

N ¼
Z

d3xðjψ j2 − n0Þ: ð14Þ
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We note that if the potential does not vary much on the scale
of ξ, then the GP equation can be solved using local density
approximation, as is often done in the case when U
represents the smooth potential of a trap holding the
condensate. However, we are interested in the opposite
limit where the range of the potential is much smaller than
ξ. Equation (12) is nonlinear and at a first glance looks
intractable. We now demonstrate that nevertheless its
analytic solution is possible as long as R ≪ ξ.
We would first like to work with a potential which is

strictly zero beyond some length rc, UðrÞ ¼ 0 for r > rc.
Later we will show that it is also possible to consider
potentials extending all the way to infinity. R introduced
above is of the order of rc but is not necessarily equal to it.
We introduce ϕ ¼ ψ=

ffiffiffiffiffi
n0

p
. Since we are looking for the

lowest energy solution, this will be real valued and spheri-
cally symmetric.
We analyze the Eq. (12) by introducing a small para-

meter ϵ ¼ rc=ξ and constructing its solution as an expan-
sion in powers of this parameter. As a first step, it is
convenient to split the range of r into 0 ≤ r ≤ rc and
rc ≤ r < ∞. In the first interval we introduce y ¼ r=rc and
ϕ ¼ χðyÞ=y. χðyÞ satisfies

−
d2χ
dy2

þ 2mr2cUχ ¼ ϵ2
�
χ −

χ3

y2

�
: ð15Þ

In the second interval we introduce z ¼ r=ξ and
ϕ ¼ 1þ uðzÞ=z, to find

−
d2u
dz2

− 2u ¼ 3
u2

z
þ u3

z2
; ð16Þ

where u → 0 when z → ∞. We need to solve Eqs. (15) and
(16), matching the solutions at the boundary r ¼ rc.
Now we will sketch the steps needed to follow through

with this strategy, leaving details for Supplemental
Material [56]. Let us first examine the case of weakly
attractive potential with a small scattering length a < 0.
We solve Eq. (15) in the interval 0 ≤ y ≤ 1 neglecting its
right-hand side as it contains a small parameter ϵ.
Then Eq. (15) reduces to a Schrödinger equation in the
potential U at zero energy, whose solution χ0 must satisfy
χ0ð0Þ ¼ 0. We normalize the solution so that χ0ð1Þ ¼ α,
then χ00ð1Þ satisfies Bethe-Peierls boundary conditions
χ00ð1Þ ¼ α=ð1 − a=rcÞ.
Now we solve Eq. (16) neglecting its right-hand side to

find u ¼ Ae−
ffiffi
2

p
z. This would be valid as long as A is

small. Matching amplitudes and derivatives of χðyÞ
and uðzÞ at z ¼ ϵ, or correspondingly y ¼ 1, produces
A ¼ ϵðα − 1Þ;− ffiffiffi

2
p

A ¼ α=ð1 − a=rcÞ − 1. Taking into
account that ϵ ≪ 1, this gives A ¼ −a=ξ, and
α ¼ 1 − a=rc. We can now plug our solution into
Eq. (13) and recover the answer (6) under the condi-
tion (10).

Let us now examine if the terms neglected to arrive at
this solution are indeed small. We solve Eq. (15) by
successive approximations, plugging χ0 into the right-hand
side of Eq. (15) and producing a correction χ1. If jaj < r0,
then both χ0ð1Þ and χ00ð1Þ are of the order of 1 while χ1 will
be of the order of ϵ2 ≪ 1 and can be neglected. It gets more
interesting if jaj > rc. Then χ0ð1Þ ¼ α ∼ a=r0, while
χ00ð1Þ ∼ 1. At the same time, χ1 ∼ ϵ2ða=rcÞ3. The magni-
tude of this had better be smaller than 1, so that the
contribution of χ01ð1Þ to the derivative of χ could be
neglected. This condition gives ϵ2jaj3=r3c ≪ 1. We thus
recover the condition (10) for the scattering length a to be
small enough so that the weak coupling solution is valid.
Note that A ≪ 1 and the right-hand side of Eq. (16) could
indeed be neglected.
Suppose now that the potentialU is made more attractive

so that its scattering length increases, violating the con-
dition (10) and eventually reaching infinity at the unitary
point. We can follow the same strategy to obtain the
solution in this case. The new element is that Bethe-
Peierls boundary conditions now imply χ00ð1Þ ¼ 0, so we
need to solve Eq. (15) perturbatively, using its right-hand
side as a perturbation, to find nonzero χ00ð1Þ. The same goes
for Eq. (16). Leaving the details of the calculation for
Supplemental Material [56], we find α ¼ A=ϵ with

A3 ¼ ϵ

�
1þ

Z
1

0

dyv4=y2
�

−1
: ð17Þ

Here ψ0 ¼ vðyÞ=y is the solution of the Schrödinger
equation at unitarity, Eq. (7), normalized so that vð1Þ ¼
1 (y ¼ 1 corresponds to r ¼ rc).
Note that α ≈ 1=ϵ2=3 controls the amplitude of the

solution to the Gross-Pitaevskii equation at r < r0. It
follows that the density of the gas at r < r0 is roughly
nl ∼ n0α2 ¼ n0=ϵ4=3. This was used earlier to argue that
nla3B ≪ 1 [or in other words, nðrÞa3B ≪ 1 for every r]
implies Eq. (9).
We can further observe that vðy > 1Þ ¼ 1, so that A can

be conveniently rewritten as A ¼ ðR=ξÞ1=3, where R was
defined in Eq. (8). Note that R can be computed even when
the potential extends to infinity, so at this point we can
safely take the limit rc → ∞ if desired. The algebra leading
to this result is also presented in the Supplemental Material
[56]. Wave functions obtained numerically for two different
UðrÞ are shown in Fig. 2. Even though the potentials have
very different features (sw is finite ranged with effective
range re ¼ rc, while sr∞ is infinite ranged with re ¼ 0), the
wave functions obtained at equal values of δ ¼ R=ξ are
remarkably similar.
We can now plug the solution thus computed into

Eq. (13) to find the expression for the energy, which is
Eq. (11). The procedure outlined here can actually be
further used to construct a perturbative expansion in powers
of ϵ or, more precisely, δ ¼ R=ξ, which gives
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E ¼ −
πn0ξ
m

ð3δ1=3 − 2
ffiffiffi
2

p
δ2=3 þ 4δ ln δþ � � �Þ;

N ¼ 4πn0ξ3
�
δ1=3 −

5

3
ffiffiffi
2

p δ2=3 þ 2δ ln δþ � � �
�
: ð18Þ

Terms beyond those shown here will require constructing
further perturbative expansion of Eq. (15), and are expected
to be less universal, depending on the features of the
potential beyond those controlled by R. In Fig. 1 we show
that the numerical solution of the GP equation using
various (finite- and infinite-ranged) unitary impurity-bath
potentials UðrÞ [53] yields polaron energies which are
remarkably independent of UðrÞ, and are in very good
agreement with our analytical result Eq. (18).
The residue Z quantifies the overlap between the

solutions in the presence and absence of the impurity.
Within the GP treatment, this is given by lnZ ¼
−
R
d3xjψðxÞ − ffiffiffiffiffi

n0
p j2 [34]. At unitarity, the above analysis

shows that to leading order lnZ ¼ −
ffiffiffi
2

p
πn0ξ3δ2=3.

Another key quasiparticle property is the impurity-bath
Tan’s contact, which quantifies the change in the polaron
energy in response to a small change of the inverse
scattering length, C ¼ −8πm∂E=∂a−1. An alternative
definition of the contact is based on the impurity-bath
density-density correlator evaluated at the core radius,
C̃ ¼ 16π2r2cjψðrcÞj2. Our formalism allows us to compute
both quantities, and we have directly verified that at
unitarity an identical answer is obtained from both defi-
nitions:

C ¼ C̃ ¼ 16π2n0ξ2δ2=3ð1 − 2
ffiffiffi
2

p
δ1=3=3þ � � �Þ; ð19Þ

in the leading approximation in δ. However, we have not
established whether C remains to be equal to C̃ in higher
order terms in δ, and neither are we aware of a general
argument establishing their equality. We also note that the

definition C̃ given above stops working when rc is infinity,
as is the case with infinite-range potentials.
To get a grasp on the physical meaning of R

for finite-ranged potentials, consider the inequalityR rc
0 r2drðγ þ v2=r2Þ2 ≥ 0, which obviously holds for every
γ. Minimizing with respect to γ, and using that the effective
range at unitarity is given by re ¼ 2

R rc
0 drð1 − v2Þ [57], we

find

rc
R

≥
3r2e
4r2c

−
3re
rc

þ 4: ð20Þ

Quite remarkably, this bound is approximately saturated by
many interesting potentials, as we show in Fig. 3. This
gives a way to estimate R starting from the knowledge of
re, which is experimentally of easy access. A direct
measurement of R is instead possible, for example, using
the single-atom detection scheme developed in Ref. [58].
As the potential U increases in strengths beyond the

unitary limit, which implies that it now has a bound state
with binding energy−ν ¼ −1=ð2ma2Þ, a becomes positive.
If a becomes sufficiently small so that the relationship (10)
holds again, simple arguments give the energy and the
number of trapped particles of the polaron as

E ∼ −mR3ν2=aB; N ∼mR3ν=aB; ð21Þ

where the precise coefficients now depend on the details of
the potential U [59].
Indeed, suppose N bosons get trapped in this bound

state, then the polaron energy is E ¼ −Nνþ gN2=2, where
the self-repulsion constant g can be estimated as g ∼ λ=R3.
Minimizing E with respect to N we find Eq. (21). This
solution can also be obtained from the GP equation if one
notes that it corresponds to the density of bosons being

FIG. 2. Short-distance behavior. Wave function zϕ obtained
from two unitary potentials (sw and sr∞) at δ ¼ 10−3 (thin line)
and δ ¼ 10−6 (thick line). The horizontal and vertical dotted lines
denote, respectively, the radii rc of the square well potentials and
the corresponding predictions zϕjr¼rc ≈ δ1=3.

FIG. 3. Upper bound to R. The range R of potentials with a
finite range [i.e., such that Uðr > rcÞ ¼ 0] is bound from above
by a simple function of the effective range re (red line); see
Eq. (20). The symbols show the range R=rc obtained from
various finite-ranged potentials [53].
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nl ∼ N=R3 ∼ ν=λ, and that results in the nonlinear term in
the GP equation λjψ j2ψ ∼ νψ , thus turning the GP equation
into the Schrödinger equation at energy close to −ν. Such
solution of the GP equation, which would fix the coef-
ficients in Eq. (21), can only be found numerically and the
answer will depend strongly on details ofU. It is easy to see
that nla3B ∼ ðaB=aÞ2 ≪ 1, justifying the use of the GP
equation. Detailed studies on Bose polarons beyond uni-
tarity have been performed by complementary approaches
in Refs. [27,28,41,44].
In conclusion, we presented here the complete analytic

solution of a challenging many-body problem, the one of
describing an impurity in strong interaction with a very
compressible Bose bath. Our formalism shall hold under
typical experimental conditions found in Bose polaron
experiments, and it allows us to compute many relevant
quasiparticle properties, like the energy, the number of
trapped bosons, the residue, and the contact. In agreement
with earlier studies, we showed that a strong attractive
interaction generates a macroscopic coherent dressing of
the impurity, which gives rise to a bosonic version of the
orthogonality catastrophe in the limit of an infinitely
compressible bath. Interesting open questions concern
the determination of the effective mass of the Bose polaron,
and of the mutual interaction between these quasiparticles.
In the presence of a nonzero range for the interactions
between bath particles, the GP equation transforms into the
integral equation discussed in Ref. [33]. We speculate that a
similar δ1=3 scaling of quasiparticle properties will be found
in that case as well (such scaling being mostly determined
by the portion of the wave function lying outside of the
potential range). On the other hand, we do not expect that
the universality discussed above will extend to reduced
spatial dimensions, because in one or two dimensions even
an infinitesimal attraction leads to the presence of a two-
body bound state.
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