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Hydrodynamic Stabilization of Self-Organized Criticality in a Driven Rydberg Gas
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Signatures of self-organized criticality (SOC) have recently been observed in an ultracold atomic gas
under continuous laser excitation to strongly interacting Rydberg states [S. Helmrich et al., Nature, 577,
481-486 (2020)]. This creates unique possibilities to study this intriguing dynamical phenomenon under
controlled experimental conditions. Here we theoretically and experimentally examine the self-organizing
dynamics of a driven ultracold gas and identify an unanticipated feedback mechanism originating from the
interaction of the system with a thermal reservoir. Transport of particles from the flanks of the cloud toward
the center compensates avalanche-induced atom loss. This mechanism sustains an extended critical region
in the trap center for timescales much longer than the initial self-organization dynamics. The characteristic
flattop density profile provides an additional experimental signature for SOC while simultaneously
enabling studies of SOC under almost homogeneous conditions. We present a hydrodynamic description
for the reorganization of the atom density, which very accurately describes the experimentally observed
features on intermediate and long timescales, and which is applicable to both collisional hydrodynamic and

chaotic ballistic regimes.
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Introduction.—Many-body systems, may they be driven,
open, or excited by a sudden parameter quench, often
evolve toward steady or transient metastable states which
can be classified as far from thermal equilibrium [1-13].
Sometimes these systems feature attractors for the non-
equilibrium dynamics that give rise to emergent scale
invariant properties over a wide range of initial states or
parameters [14—18]. One paradigmatic example is self-
organized criticality (SOC), whereby a dissipative many-
body system evolves toward a (nonequilibrium) critical
state by an intrinsic feedback mechanism. Since its first
introduction by Bak, Tang, and Wiesenfeld in 1987 [12,19],
SOC has been intensively studied theoretically and asso-
ciated with phenomena ranging from avalanches and
earthquakes to solar flares and neuronal activity [20-24].

The range of phenomena found to exhibit SOC-like
characteristics is at odds however with the relatively
stringent conditions expected to lead to SOC [25]. For
example, the typical requirements of a large separation of
timescales between slow dissipation and fast, conservative
bulk dynamics will never be perfectly satisfied in practice
[26]. This has lead to the notion of self-organized quasi-
criticality (SOQC) where the system hovers around criti-
cality with large excursions into the sub- and supercritical
phases [26,27]. Nonetheless, key signatures of SOC
including scale invariance of the stationary density and
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power-law distributed excitation avalanches were recently
observed in the driven-dissipative dynamics of atomic
Rydberg gases [28] (see also related experiments in driven
thermal gases [29]). These works, however, did not
pinpoint an integral mechanism which brings the system
out of the subcritical absorbing phase. This therefore raises
important questions about how signatures of the SOC state
persist for long times and whether it bears universal
characteristics [25] that can be extracted from experiments
in a transient regime.

Here we experimentally and theoretically demonstrate
that the mechanisms leading to the SOC state are remark-
ably robust. We show that slow thermal motion of the
particles provides an additional feedback mechanism which
stabilizes the system close to the critical state over an
extensive time period. This is evidenced by the experi-
mental observation of a stable flattop profile in the atomic
gas, where the wings of the distribution act as particle
reservoirs that compensate particle loss in the trap center
(Fig. 1). To explain this result we develop a hydrodynamic
Langevin equation which includes the competition between
thermalization of the gas (in the motional degrees of
freedom) and the driven-dissipative excitation dynamics
leading to SOC. The thermal motion of each atom in the
trapping potential yields an effective evolution for the atom
density, which we describe in the overdamped regime,
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FIG. 1. Mechanisms for self-organized criticality in an ultra-

cold atomic gas. (a) A trapped atomic gas with inhomogeneous
density distribution is continuously driven by an off-resonant
excitation laser to highly excited Rydberg states (blue disks).
(b) Trajectory of the atom density n, and the excitation density p;
driven by facilitated excitation, decay, and hydrodynamic motion.
Starting from the supercritical phase n,_y > n. the system
undergoes: (i) rapid growth of Rydberg density; (ii-a) self-
organization from the active phase toward the critical point via
gradual depletion of particles (caused by loss from the Rydberg
state); (ii-b) refilling of the central density from the subcritical
phase by atomic rearrangement (thermal motion) from the wings
to the trap center; (iii) stabilization close to the critical point for an
extended period of time. (c) Upper panels: exemplary exper-
imental absorption images (nj, integrated over z) at different
times. Lower panels: Reconstructed three-dimensional atom
density nz, at y = z = 0 showing a flattop profile at the SOC
critical density starting around 5 ms and persisting until much
later times.

giving rise to drift and diffusion terms. Although the
experiment is not in a collisional regime, this approach
captures the collective evolution towards a thermal distri-
bution extremely well. It is reminiscent of the hydro-
dynamics of a gas in classical statistical mechanics and
gives rise to density currents. This allows the cloud to
adapt by slowly refilling subcritical regions back to a
critical state, similar to plasticity in biological neural
networks [30,31].

Self-organization mechanism.—We consider a spatially
inhomogeneous gas of ultracold atoms held in an approx-
imately harmonic optical potential produced by a focused
far-off-resonant laser beam [28] [depicted in Fig. 1(a)]. The
atoms are continuously driven by a detuned laser field,
which creates rare and isolated Rydberg excitations at
random positions in the gas. Once an excitation is present it
either spontaneously decays (typically accompanied by
loss from the trap [28]), or triggers secondary excitations
through a process called Rydberg facilitation [32-35]. This
occurs at a characteristic distance rg,, ~ 4.5 um (for the

present experiments) where the laser detuning is compen-
sated by the van der Waals interaction between Rydberg
pair states [36]. The self-organizing dynamics are driven by
the competition between facilitated excitation (with a rate
proportional to kny ,, where « is the microscopic facilitation
rate per unit volume and nj, is the total atom density) and
decay of excitations with a density independent, overall
decay rate per excited atom I'. These two processes
compete to produce complex dynamics [28,37—40] which
drives the system to a critical atom density n,. ~ I"/k. For
ng, > n. (supercritical or active phase) individual excita-
tions can grow into spatially extended clusters of excita-
tions (avalanches) with a high degree of activity and
particle loss. For n3, < n,. (absorbing phase), these exci-
tation avalanches are rare or vanishingly small.

Figure 1 illustrates the mechanisms leading to SOC.
Starting from the supercritical regions of the cloud, the
density of excitations p;, undergoes a period of rapid
growth [labeled (i) in Fig. 1(b)] (knz, > I'). Roughly after
one millisecond (=1/T), this is followed by a slow, visible
decrease in both n;, and pz, owing to a gradual loss of
excited atoms [labeled (ii-a)]. In the limit of vanishingly
small effective loss rate (perfect separation of timescales)
the system will follow a characteristic trajectory [dashed
blue curve in Fig. 1(b)] that terminates at the critical point
[orange cross at nz, = n, and p;z, = 0]. If instead the
excitation avalanches persist on timescales comparable to
the time for self-organization, the dynamics may overshoot
the critical point, terminating in the absorbing phase [dotted
grey curve in Fig. 1(b)]. This is associated with the
appearance of a temporary dip in the atomic density
distribution [grey curve in Fig. 1(a)]. However, slow
motion of particles in the trap refills this density dip,
providing a mechanism to escape the absorbing phase and
approach the critical point [red curve in Fig. 1(a), labeled
(ii-b)]. This interplay of nonlinear excitation dynamics and
atomic motion explains how the system self-organizes
close to the critical point with a constant critical density
across the cloud and sustains critical dynamics (e.g.,
avalanches) for long times compared to the initial self-
organization period [labeled (iii)].

Experimental approach.—OQOur experiments start with an
ultracold gas of N = 10° potassium-39 atoms trapped in
a cigar-shaped optical potential with trap frequencies
w,/2n = 65 Hz and o, . /27 = 950 Hz. The atomic cloud
has a temperature T = 40 uK and e~'/? radii 6, = 210 pm,
oy, = 12 ym with a peak density ny = 0.21 gm™. At time
t = 0, we switch on an off-resonant ultraviolet (UV) laser
coupling with Rabi frequency Q/2z =~ 200 kHz and
detuning A/2z =30 MHz on the transition from the
ground state |g) = |4s,/,, F = 1) to the Rydberg state
|r) = |66p3,). To strongly suppress single-particle exci-
tations and ensure that many-body effects dominate, we
stay in the regime I' < Q <« A [37,41-52]. Excitations
decay with a calculated rate I'/2z = 0.84 kHz, which
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either brings them back to the ground state |g) or into states
|0) which are decoupled or lost from the trap. This
irreversible loss of particles |r) — |0) provides the first
crucial self-organization mechanism [28]. After laser
exposure time f, we measure the number of Rydberg
excitations in the cloud as well as the spatial distribution
of ground state atoms remaining in the trap. For the former
we field ionize the Rydberg atoms and detect them on a
microchannel plate detector. For the latter we take an
absorption image of the atom cloud, which integrates along
the propagation of the light field [28].

Example absorption images after different exposure
times ¢ are shown at the top of Fig. 1(c), roughly coinciding
with those sketched in Fig. 1(a). The line profiles in
Fig. 1(c) are reconstructed cross sections of the three-
dimensional density distribution through the center of the
cloud. They are obtained by an inverse Abel transformation
of the average over several absorption images. Initially the
gas has an approximately Gaussian shape as expected for an
optically trapped thermal gas. At = 5 ms, adip in the center
where the density was initially the highest has developed. For
even longer times 7215 ms, this dip has filled in to give a
flattop coinciding with the critical density 7.

Theoretical description.—The collective dynamics of the
driven Rydberg ensemble can be described by a non-
equilibrium field theory for the local density of particles nyx
and the density of excitations pz, [28]. Besides dissipative
decay and facilitated spreading of excitations, we also
account for hydrodynamic motion of the atoms via two
coupled stochastic evolution equations for ps ,, nz ,, includ-
ing the internal and external degrees of freedom.

We label each atom with an index j, a set of operators

a}lﬁ = |a)(f|; where a, § label the states 0, g, r, and a

(classical) position X;. The equation of motion (EOM) for
the internal degrees of freedom is given by the microscopic
Liouvillian

o =i (S
t j#l |x1

+ 5(1/)’(5("7/(16 + 5(1g}/lg + 5a0yl0)

> rr_|_g _;0 ,Glaﬁ

—_{‘71 o) }

with the anti-commutator {- -, - - - }, commutator [- - -, - -],
and Kronecker symbol &, . ThlS includes coherent single-
particle processes: laser driving with Rabi frequency Q and
detuning A, and an (effectively) isotropic van der Waals
interaction between atoms / and j if both are in the Rydberg
state (assuming an average over Rydberg pair state poten-
tials [53]). Dissipative single-particle processes are quanti-
fied by the dephasing rate y4., the spontaneous decay
rate y, for the process |r) — |g) (yo for |r) — |0)) and
I'=v4e +7,9t 70, Wwhere I'>y , [28].

Defining a spherical unit cell with radius rq. and
volume Vi, the coarse-grained densities are [28]

Pir = ;,}<61r‘r>/vfac’ Ny = Z;;(U;r + 6§g>/vfac where
Z;; is restricted to j with [X; — X| < rg,.. The EOM for the
atomic density is evaluated by applying the chain rule

10y(c7 +6})

1\
6tni,t = § %
fac

Jx Jix

where V = (0,,0,.0;). It contains the EOM for the
internal degrees of freedom and for the position of
the atoms. The sum over the velocities in Eq. (1) is by
definition the coarse grained current 7

An equivalent computation for 0,p;, yields the Langevin
equation [40,54]

Opzi= (sz —D)pzi+ (z+xpz,) (e, —=2pz) +Ezie (2)
Evolution within each unit cell consists of facilitated (de-)
excitation with an estimated rate kpg,~(Q2Vio/2A)ps,
[28,54] and dissipative decay ~I. Excitations spread
diffusively between unit cells with Dry ~«k. Rare,
off-resonant single-particle excitations occur with rate
o}, = (k['/A) =~ 10~*k, acting as local seeds to prevent
the system from getting stuck in an absorbing state. Local
fluctuations in the excitation density are described by a
multiplicative Markovian noise (X, r) with autocorrelation
function (&(x,1)E(y, 7)) =8(x—y)8(t—1')(Tpz,+7) [54].
The EOM of the density nz, yields

at”?s,t = _vj},t —Y10Px 1> (3)
where we use the current 7;6, = —(D7V +nVVsi)nz,,
which is obtained from a hydrodynamic (coarse-grained)
description of a classical thermal gas [55]. The evolution is
composed of diffusion (ex D7) and drift due to the external
force —VV;. The force originates from the harmonic
trapping potential V; = (M/2) Zz:x,y.z(wlfz)z, for which
we use the frequencies w; and atomic mass M from the
experiment. This statistical treatment of the atom motion is
motivated by (i) the short thermal deBroglie wavelength
A = h/\2xMkyT ~ 30 nm compared to the trap size
(10-100 pm) and (ii) an effectively collisionless motion
due to the low density and small scattering cross section for
the gas.

In the limit y|o — 0, the steady state has zero current
}'};‘, = 0 and follows the Gaussian equilibrium distribution
Nz, = n)(;q) = nyexp(—Vz/kgT). For the numerical simu-
lation we use the temperature 7 measured in the experi-
ment, such that the initial spatial extension of the cloud is

61 =/kgT/Mwj, ie., o, = 25r, and 6, = 44rg,.. For

Y10 > O the current counteracts the loss and pulls density
towards the center of the cloud, trying to rethermalize to a
Gaussian distribution with a typical rate 7M®?. In the EOM
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for p;,, particle motion is negligible compared to the
facilitated spreading of excitations, i.e., ~Drg2 > nMw?.

The mobility 7 is related to the diffusion constant
D7 = nkgT via the Finstein relation and the product nM
corresponds to the timescale over which the gas thermalizes
in the absence of the driving laser. Because the gas is in the
collisionless regime, the effective value of 7 is determined
primarily by the anharmonicity of the trapping potential.
A comparison with the experimental thermalization time
yields ~1/(nMw?) = 7 ms. This respects the separation
of timescales between the fast spreading of excitations
Nrfz-ac /D = 0.1 ms and a thermalization time of ~2 (29)
oscillation periods in the x (y-z) direction.

The Langevin equations are integrated numerically
on a 3 + l-dimensional lattice via an operator splitting
scheme [55,58,59]. In the simulations we use parameters
matching the experimentally observed facilitation and
decay rates [28,60].

Dynamics.—Figure 2 shows comparable experiments
and numerical simulations for an initially Gaussian atomic
cloud with peak density n > n.. Examining both compo-
nents nz,, py, provides insights into the different dynamical
regimes. An initial growth regime (i), covering the first few
milliseconds of evolution, results in a macroscopic
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FIG. 2. Theory-experiment comparison showing the approach
to the SOC state (top: experiment, bottom: theory). (a) Instanta-
neous number of Rydberg excitations integrated over the cloud
(x p,). Each data point is obtained from a destructive measure-
ment and corresponds to a distinct experimental realization.
Several small but statistically significant avalanches are observed
for t > 50 ms. Inset: corresponding total atom number. (b) One-
dimensional slices through the atomic density distribution n;, at
y = z = 0. (c) Simulated dynamics of the full time evolution (red
line: single trajectory, grey lines: overlapped data of six different
trajectories) showing temporally well separated, extensive ex-
citation avalanches that persist long after the initial growth and
self-organizing regimes (i) and (ii). (insets: snapshots of the peak
excitation density per avalanche at z = 0). (d) Slices through the
simulated density profiles at y = z = 0 showing the formation of
a flattop density profile pinned at n;, = n,. analogous to the
experimental observations in (b) (see also inset).

Rydberg population. The early time growth dynamics
are interesting in their own right [61], but are not overly
important for the self-organizing behavior on longer time-
scales. Subsequent loss from the Rydberg state begins to
decrease the total atom number, leading to a self-organizing
regime (ii), evidenced by large bursts of Rydberg excita-
tions [large activity seen in Figs. 2(a) and 2(c)] and a
sudden drop in the central density of the atomic cloud.
The density approaches a flattop distribution with critical
central density n;, = n.. This marks the onset of the self-
organized critical regime (iii), characterized by a nearly flat
central density nz, = n, [red curves in Figs. 2(b) and 2(d),
imaging noise is enhanced by the inverse Abel transform
causing the appearance of additional structure in Fig. 2(b)]
and sporadic avalanchelike excitation events. This is
reached after approximately 15 ms in the experiment
and persists until at least 150 ms. Simulations show that
subsequent avalanches are well separated in space and
time, implying that experimentally observed Rydberg
excitation spikes correspond to individual avalanche events
[Fig. 2(c)].

We identify the state reached under these experimental
conditions as SOC because it self-organizes to a critical
density profile ny, = n.. Close to the critical density, the
system is known to yield power-law statistics for excitation
outbursts [7,59], demonstrated for the same setup in
Ref. [28]. In this regime each avalanche transiently imprints
a slight depression in the density profile such that n;, < n..
However, particle transport from the flanks reestablishes
ny;~n. between successive avalanches (Fig. 2), thus
sustaining a close to ideal critical SOC state over a large
region of the system.

To quantify the characteristic timescale for this mecha-
nism, we investigate the effective refilling rate of the central
region A. A necessary condition for maintaining a SOC
state is to satisfy a common separation of timescales
Yi0 > A > 7 [23,59]. The refilling rate is determined by

the gradient of the particle current An;, = —V}'}m from the
wings towards the center. To estimate 4, we apply a mean-
field approach based on our observation that the current is
dominated by particle flow along the elongated x direction.
Therefore, we assume a quasi-one-dimensional cloud
with a flattop of length L, and a constant central density
n,, =i, > n,. Outside, the density is subcritical and

follows the equilibrium profile n, , = fz,(n)((eq) / niq}z), which

minimizes the current jx’t = 0 in the absence of excitations
(py: = 0). Averaging the current induced particle gain over
the center yields

1
nA=—— dx0yjy, = nMawii,. 4)
Ly Jix<L,/2
Using Eq. (4), we estimate yo/A~50 and /7~ 100

from experimental parameters (and comparable for the
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FIG. 3. Melting of the flattop from the time-evolved density
profile ny, (projected onto the x axis). (a) Experimental mea-
surements at different times and (b) the simulated evolution show
a stable flattop with a lifetime exceeding 200 ms and a boundary
(white dashed curve), which slowly approaches the center. Both
plots extend over the same x-axis distance. (c) Equilibration of
the cloud profile is quantified by its time-dependent excess
kurtosis EK, = [ dx(x/o,)*nz, — 3, where we integrate over a
density slice with y = z = 0. Here o, is the width of the cloud in
the x direction. Starting from a Gaussian shape (EK = 0), the
kurtosis drops to EK ~ —1 after the initial avalanche. It recovers
when the cloud evolves back towards an asymptotic thermal,
Gaussian state.

theory [60]). This indeed ensures that individual avalanches
experience a nearly constant central density over their
lifetime. It also ensures that the refilling of the central
density happens much faster than off-resonant excitations
(~1/7), leading to well-separated avalanches, fulfilling the
necessary conditions for SOC [23].

Finally, we analyze the late time dynamics, characterized
by a slow melting of the flattop, resulting in the reestab-
lishment of a Gaussian density profile, and the absence of
excitation avalanches. We identify the state fulfilling both
conditions simultaneously as thermal equilibrium. This
occurs when the particle reservoirs represented by the
flanks are continuously depleted, leading to a gradual
shrinking of the flattop region [Figs. 3(a) and 3(b)]. This
can be seen by the evolution of the excess kurtosis EK,,
shown in Fig. 3(c). A nonzero kurtosis serves as a measure
for the deviation of the cloud shape from a thermal
Gaussian distribution, i.e., it measures the relative flatness
of the distribution. Its relaxation monitors the melting
of the flattop towards a robust, thermal equilibrium state
without excitation outbursts (corresponding to EK, = 0).
Figure 3(c) shows that the timescale on which a Gaussian
distribution is restored exceeds 200 ms. Consequently
we infer the lifetime of the SOC state to be at least
10 times longer than the timescale associated with self-
organization (=20 ms).

Conclusion.—We have identified an important additional
mechanism which explains how SOC can be sustained in a

driven-dissipative ultracold atomic gas by nonequilibrium
currents. We show that this generates a flattop density
distribution at the SOC critical density, quantitatively
confirmed by the hydrodynamic Langevin theory. This
demonstrates a novel signature for SOC that could help
identify SOC-like behavior in other systems, such as room-
temperature atomic vapors and cold molecular plasmas
[29,62]. Similar mechanisms may also be at play in very
different systems including adaptive neural networks
[30,31]. The fact that the system naturally evolves to a
stable, mostly homogeneous shape combined with the
effectiveness of the hydrodynamic Langevin theory will
enable more stringent tests of nonequilibrium universality
in SOC systems. Alternatively, the interplay between
internal and external degrees of freedom could lead to
other rich dynamical regimes to test, such as oscillatory
behavior associated with SOQC [26,27,63].
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