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We report the first evidence for Xð3872Þ production in two-photon interactions by tagging either the
electron or the positron in the final state, exploring the highly virtual photon region. The search is
performed in eþe− → eþe−J=ψπþπ−, using 825 fb−1 of data collected by the Belle detector operated
at the KEKB eþe− collider. We observe three Xð3872Þ candidates, where the expected background is
0.11� 0.10 events, with a significance of 3.2σ. We obtain an estimated value for Γ̃γγB(Xð3872Þ →
J=ψπþπ−) assuming the Q2 dependence predicted by a cc̄ meson model, where −Q2 is the invariant mass
squared of the virtual photon. No Xð3915Þ → J=ψπþπ− candidates are found.

DOI: 10.1103/PhysRevLett.126.122001

The charmoniumlike state Xð3872Þ has been observed
in various interactions since its first observation in
B → KJ=ψπþπ− decays [1]. Its spin, parity, and charge
conjugation are determined to be 1þþ [2], but its internal
structure is still a puzzle [3,4]. Subsequent to the spin-
parity determination, the Xð3872Þ has not been searched
for in two-photon interactions because axial-vector
particles are forbidden to decay to two real photons [5].
However, mesons with JPC ¼ 1þþ can be produced if one
or both photons are highly virtual [6]—denoted as γ�.
We perform the first search for a 1þþ charmonium state

in two-photon interactions using eþe− → eþe−Xð3872Þ,
where one of the final-state electrons, referred to as a
tagging electron, is observed, and the other scatters at an
extremely forward (backward) angle and is not detected [7].
Such events are called single-tag events. The Xð3872Þ is
reconstructed via its decay to J=ψπþπ− (J=ψ → lþl−). By
measuring the momentum of the tagging electron, we
measure the Q2 dependence of Xð3872Þ production, where
−Q2 is the invariant mass squared of the virtual photon. If
the Xð3872Þ has a molecular component in its structure, it
must have a steeper Q2 dependence than the regular cc̄
state. Hence, the single-tag two-photon interactions provide
information on the structure of this state. The value of the

two-photon decay width, obtained from this measurement,
is sensitive to the internal structure of the Xð3872Þ. Early
attempts to calculate such decay widths for charmonium-
like exotic states have been reported in Ref. [8]. We also
search for the Xð3915Þ in the same final state through the
G-parity-violating J=ψρ0 (ρ0 → πþπ−) channel, as well as
J=ψω (ω → πþπ−) decay [9].
We use 825 fb−1 of data collected by the Belle detector

operated at the KEKB eþe− asymmetric collider [10,11].
The data were taken at the ϒðnSÞ resonances (n ≤ 5) and
nearby energies, 9.43 <

ffiffiffi
s

p
< 11.03 GeV.

The Belle detector is a general-purpose magnetic spec-
trometer [12,13]. Charged-particle momenta are measured
by a silicon vertex detector and a cylindrical drift chamber.
Electron and charged-pion identification relies on a combi-
nation of the drift chamber, time-of-flight scintillation
counters, aerogel Cherenkov counters, and an electro-
magnetic calorimeter made of CsI(Tl) crystals. Muon
identification relies on resistive plate chambers in the iron
return yoke.
For Monte Carlo (MC) simulations, used to set

selection criteria and derive the reconstruction efficiency,
we use TREPSBSS [14,15] to generate single-tag eþe− →
eþe−Xð3872Þ events in which the Xð3872Þ decays to
J=ψπþπ− and J=ψ decays leptonically. For simulating
radiative J=ψ decays, we use PHOTOS [16,17]. A GEANT3-
based program simulates the detector response [18].
Since one final-state electron is undetected, we select

events with exactly five charged tracks, each coming from
the interaction point and having pT > 0.1 GeV=c, with two
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or more having pT > 0.4 GeV=c, where pT is the trans-
verse momentum with respect to the eþ direction.
J=ψ candidates are reconstructed by their decays to

eþe− or μþμ−. A charged track is identified as an electron if
its electron likelihood ratio Le=ðLe þ LπÞ is greater than
0.66 and as a muon if it is not selected as an electron and if
its muon likelihood ratio Lμ=ðLμ þ Lπ þ LKÞ is greater
than 0.66; Lx is the likelihood for a particle to be of species
x [19,20]. We require the mass of the lepton pair to be in
the range 3.047–3.147 GeV=c2. In the calculation of
the invariant mass of an eþe− pair, we include the four-
momenta of radiated photons, having energy less than
0.2 GeV and angle relative to an electron direction of less
than 0.04 rad.
The tagging electron must have an electron likelihood

ratio greater than 0.95 or E=p greater than 0.87, where E is
the energy measured by the electromagnetic calorimeter
and p is the momentum of the particle. We require that the
tagging electron have momentum above 1 GeV=c and
pT > 0.4 GeV=c. The electron momentum includes the
momenta of radiated photons, using the same requirements
as for the electrons from J=ψ decays.
We identify a charged track as a pion if it satisfies

the likelihood ratio criteria of Lπ=ðLπ þ LKÞ > 0.2,
Lμ=ðLμ þ Lπ þ LKÞ < 0.9, Le=ðLe þ LπÞ < 0.6, and its
E=p is less than 0.8 [21]. Events should have no photons
with energy above 0.4 GeV or π0 candidates with χ2 from
the mass-constrained fit less than 4.0.
As the Xð3872Þ should be back to back with the tagging

electron projected in the plane perpendicular to the beam
axis, we require the difference between their azimuthal
angles be in the range ðπ � 0.1Þ rad.
The total visible transverse momentum of the event p�

T
[22] should be less than 0.2 GeV=c. We also require that
the measured energy of the J=ψπþπ− system E�

obs be
consistent with the expectation E�

exp calculated from the
momentum of the tagging electron and the direction
and invariant mass of the J=ψπþπ− system, imposing
energy-momentum conservation. Since the energy and
total transverse momentum are correlated, we impose a
two-dimensional criterion

ðp�
T þ 40 MeV=cÞ

�jE�
obs − E�

expj
E�
exp

þ 0.003

�
< 3 MeV=c:

ð1Þ

Figure 1 shows the distribution of events and these
selection criteria in the p�

T vs E�
obs=E

�
exp plane.

Finally, we place a requirement on the missing momen-
tum of the event, equal to the momentum of the unmeas-
ured electron that goes down the beam pipe. We require the
missing-momentum projection in the e− beam direction
in the center-of-mass frame be less than −0.4 GeV=c
for e−-tagging events and greater than 0.4 GeV=c for
eþ-tagging events.

We search for Xð3872Þ and Xð3915Þ by looking for
events in the J=ψπþπ− mass distribution MðJ=ψπþπ−Þ.
The reconstructed mass resolution is expected to be
2.5 MeV=c2 from the MC simulation. We define two
signal regions: 3.867–3.877 GeV=c2 for the Xð3872Þ
and 3.895–3.935 GeV=c2 for the Xð3915Þ. The former
accommodates the Xð3872Þ with a known mass of
3871.69� 0.17 MeV=c2 and a decay width less than
1.2 MeV [23]; the latter accommodates the Xð3915Þ with
a known mass of 3918.4� 1.9 MeV=c2 and a decay
width of 20� 5 MeV. We constrain the J=ψ mass to
3.09690 GeV=c2 when we calculate MðJ=ψπþπ−Þ [24].
The dominant background, centered at 3.686 GeV=c2,

arises from radiatively produced ψð2SÞ, eþe− →
eþe−ψð2SÞ, with ψð2SÞ → J=ψπþπ−. Figure 2 shows
the MðJ=ψπþπ−Þ distribution in data in the vicinity of
ψð2SÞ. Although the width of the ψð2SÞ peak is
2.7 MeV=c2, it has a tail on the higher mass side.
This feature was also seen in previous studies of
J=ψπþπ− produced by initial-state radiation (ISR) [25].
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FIG. 1. p�
T vs E�

obs=E
�
exp distribution from data. The (red) line

shows the selection criteria applied to p�
T and E�

obs=E
�
exp; events

below the line are accepted.
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FIG. 2. MðJ=ψπþπ−Þ distribution shown with the ψð2SÞ veto
(shaded gray region).
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To remove ψð2SÞ events, we veto events within
0.03 GeV=c2 of the ψð2SÞ mass, 3.686 GeV=c2.
Figure 3 shows the Q2 distribution after removing those
events, where Q2 ¼ 2ðpin · pout −m2

ec2Þ and pin and pout
are the four-momenta of the incoming (beam) and out-
going (tagging) electrons, and me is the electron mass.
In Fig. 3, data are dominated by background events, while
the MC simulation is pure Xð3872Þ. Since two-photon
processes are strongly suppressed at high Q2, we require
Q2 < 25 GeV2=c2 to reduce non-two-photon background.
Our measurement is insensitive for Q2 < 1.5 GeV2=c2 due
to low reconstruction efficiency.
Figure 4 shows the observed events in the Q2 vs

MðJ=ψπþπ−Þ plane. Three events are in the Xð3872Þ
signal region; no events are in the Xð3915Þ region.
The masses of the events in the Xð3872Þ signal
region are 3.8726, 3.8701, and 3.8742 GeV=c2, averaging
to 3.8723� 0.0012 GeV=c2, where the uncertainty
is statistical. At masses below the Xð3872Þ region,

3.716–3.867 GeV=c2, there are six events, presumably
from ψð2SÞ events; at masses above the Xð3872Þ, there
are no events below 4.266 GeV=c2, in the region of the
Yð4260Þ mass. A similar distribution was seen in the Belle
ISR study [25]. The J=ψπþπ− events can also originate
from t-channel photon exchange with the emission of a
virtual photon, which we call internal bremsstrahlung (IB)
[26]. Both processes produce C-odd J=ψπþπ−, like ψð2SÞ,
while the C-even Xð3872Þ peak can only be produced
from the two-photon process. The absence of a prominent
Yð4260Þ enhancement in our data argues against non-
negligible contribution from the C-odd process through the
decay γ� → Yð4260Þ → γXð3872Þ [27]. To estimate the
background from IB, which has the same final-state particle
configuration as our process and is hence difficult to
separate, we use the ISR data [25]. By fitting the ISR
data to our data in the region 3.5 < M < 4.5 GeV=c2,
corrected for the differences in the diagrams of s and t
channels, we estimate the number of background events to
be ð3–5Þ × 10−2=ð10 MeV=c2Þ in the region between 3.8
and 4.2 GeV=c2. This explains the absence of events
between the Xð3872Þ and 4.26 GeV=c2.
To estimate the background level in the Xð3872Þ signal

region, we fit a linear function

maxð0; a½MðJ=ψπþπ−Þ − 3.872 GeV=c2� þ bÞ ð2Þ

to the data in the region �0.156 GeV=c2 centered at the
Xð3872Þmass, excluding the signal region; a and b are free
in the fit. The width of 0.156 GeV=c2 is determined by the
distance between the Xð3872Þ and the upper boundary,
3.716 GeV=c2, of the ψð2SÞ vetoed region. Using an
unbinned extended maximum-likelihood fit, we obtain a ¼
−345� 195=ðGeV=c2Þ2 and b ¼ 10.5� 10.1=ðGeV=c2Þ.
This yields nb ¼ 0.11� 0.10 background events in
the Xð3872Þ signal window, where the uncertainty is
statistical only.
To derive the systematic uncertainty due to background

modeling, we test two modified fitting functions. One is a
power function, a0=½MðJ=ψπþπ−Þ − b0�c0 with b0 set to
2.4 GeV=c2; the fit is insensitive to the value of b0. This
gives nb ¼ 0.096� 0.068. The other is a linear function
with a break at 3.800 GeV=c2, a00½MðJ=ψπþπ−Þ −
3.800 GeV=c2� þ b00 for MðJ=ψπþπ−Þ < 3.800 GeV=c2

and b00 for MðJ=ψπþπ−Þ ≥ 3.800 GeV=c2, based on
the shapes of the MðJ=ψπþπ−Þ distributions in the ISR
[25,28] and the eþe− annihilation studies [29,30]. This
gives nb ¼ 0.122� 0.095. From the variations of nb in
the three forms, we derive �0.013 for the systematic
uncertainty. This is negligible compared to the statistical
uncertainty. The estimated number of background
events is 0.11� 0.10, including statistical and systematic
uncertainties.
With this background, the significance of three events is

3.2 σ. For the Xð3872Þ signal, with three observed and 0.11
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FIG. 3. Q2 distribution for data (blue dots) and MC simulation
(red histogram). The area of MC distribution is normalized to
that of data. The vertical (magenta) line indicates the selection
requirement.

3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4

)2c)  (GeV/−π+πψ/J(M

0

5

10

15

20

25

30

)2 c/2
  (

G
eV

2
Q

X(3872)

X(3915)

FIG. 4. Observed events (red dots) in the Q2 vs MðJ=ψπþπ−Þ
plane. Three events are seen in the Xð3872Þ signal region (red
lines with shade). The blue lines with shade show the Xð3915Þ
signal region. The vetoed regions are shaded gray with
dashed lines.

PHYSICAL REVIEW LETTERS 126, 122001 (2021)

122001-5



expected background events, we calculate the number
of signal events, Nsig ¼ 2.9þ2.2−2.0ðstatÞ � 0.1ðsystÞ, at 68%
confidence level (C.L.). For the Xð3915Þ signal, with zero
observed and 0.3 expected background events, we obtain
Nsig < 2.14 at 90% C.L. The Feldman-Cousins method is
used in both cases [31].
The differential cross section for the production of a

resonance (X) in a single-tag two-photon interaction is
expressed as [32]

dσeeðXÞ
dQ2

¼ 4π2
�
1þ Q2

M2

�
2J þ 1

M2
Γγ�γðQ2Þ

×2
d2Lγ�γ

dWdQ2

����
W¼M

; ð3Þ

where Lγ�γ is the single-tag luminosity function, M is the
resonance mass, −Q2 is the invariant mass squared of
the virtual photon, Γγ�γðQ2Þ is the γ�γ decay width,W is the
invariant mass of the γ�γ system, and J is the resonance
spin. The factor of 2 comes from the existence of two
production modes: e−γ� and eþγ� scattering.
For a J ¼ 1 resonance, spin-parity conservation forbids

production at Q2 ¼ 0. To remove the Q2 dependence from
Γγ�γðQ2Þ, we use the reduced γγ decay width Γ̃γγ defined
as [6,33]

Γ̃γγ ≡ lim
Q2→0

M2

Q2
ΓLT
γ�γðQ2Þ; ð4Þ

using its Q2 dependence near zero; ΓLT
γ�γ is the γ�γ decay

width corresponding to a formation of the resonance from a
longitudinal (virtual) photon and a transverse (real) photon.
Substituting this expression into Eq. (3), we obtain

dσeeðXÞ
dQ2

¼ 4π2
3

M2
2
Q2

M2
ϵΓ̃γγ2

d2Lγ�γ

dWdQ2

����
W¼M

ð5Þ

for Q2 ≪ M2, where an extra factor of 2 comes from the
difference in the number of spin degrees of freedom: the
longitudinal component has one degree of freedom and
the transverse component has two with unpolarized inci-
dent photons. In Eq. (5), ϵ is the ratio LLT=LTT , where LLT

is the luminosity function for the production of one
longitudinally polarized photon and one transversely polar-
ized photon, and LTT is that for two transversely polarized
photons. Using the Schuler-Berends-Gulik (SBG) model
[6,34] for qq̄-type axial-vector mesons, this can be
extended to higher Q2 [33],

dσeeðXÞ
dQ2

¼ Γ̃γγFðM;Q2; ϵÞ d
2Lγ�γ

dWdQ2

����
W¼M

; ð6Þ

where

FðM;Q2; ϵÞ ¼ 48π2

M2

Q2

2M2 þ ϵ

ð1þ Q2

M2Þ3
Q2

M2
; ð7Þ

accounting for contributions from helicity 0 and 1. The
SBG model, based on cc̄, is the only model available at
present that can reliably extend Eq. (5) to the higher Q2

region: Eq. (7).
To relate the number of signal events and the decay width

Γ̃γγ, we use Eqs. (6) and (7), assuming theXð3872Þ is a pure
cc̄ state [6],

Nsig ¼ LintBðX → J=ψπþπ−ÞBðJ=ψ → lþl−Þ

× Γ̃γγ

Z
Q2

max

Q2
min

dQ2FðM;Q2; ϵÞεeffðQ2Þ d
2Lγ�γ

dWdQ2

����
W¼M

;

ð8Þ
where εeffðQ2Þ is the Q2-dependent reconstruction effi-
ciency, Lint is the integrated luminosity, BðX → J=ψπþπ−Þ
is the branching fraction of the Xð3872Þ to J=ψπþπ−, and
BðJ=ψ → lþl−Þ ¼ 0.1193 is the branching fraction of
J=ψ to lepton pairs [24]. We estimate the reconstruction
efficiency from MC simulation, in which we model the
Xð3872Þ decay as Xð3872Þ → J=ψρ0 with J=ψ → lþl−

and ρ0 → πþπ− and with all daughter particles isotropically
distributed in the rest frames of their parents. The decay
model via ρ is motivated by the measured mass distribu-
tions [1,35,36]. It has a reconstruction efficiency 12%
higher than that for nonresonant πþπ−; we include a 6%
systematic uncertainty to account for this. The angular
distribution of the decay products of the Xð3872Þ negli-
gibly affects the reconstruction, as confirmed by simulating
with an alternative model with decay angles of daughters
from a JP ¼ 1þ resonance with helicities 0 and 1.
Detection efficiencies range from 4% to 8% for Q2

between 3 and 25 GeV2=c2 and have smaller values for
Q2 < 3 GeV2=c2. They are estimated for our three center-
of-mass energies on the ϒð2SÞ, ϒð4SÞ, and ϒð5SÞ reso-
nances and average the values weighted by their corre-
sponding integrated luminosities. We also average over the
four detection modes given the two tagging charges (eþ and
e−) and the two J=ψ decay modes (eþe− and μþμ−).
The luminosity functions for our beam energies are

calculated as functions ofQ2 using TREPSBSS. We set ϵ ¼ 1
as a convention for the present application of Eq. (7) [6].
After performing the Q2 integration in Eq. (8), from
Q2

min ¼ 1.5 GeV2=c2 to Q2
max ¼ 25 GeV2=c2, we obtain

Γ̃γγB(Xð3872Þ → J=ψπþπ−) ¼ ð1.88� 0.24Þ eV × Nsig;

ð9Þ

including the total systematic uncertainty from the
integration.
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The dominant systematic uncertainty on Γ̃γγBðX →
J=ψπþπ−Þ is from the reconstruction efficiency, primarily
due to differences between MC simulation and data. The
largest uncertainty, 7%, is in the J=ψ selection from the
uncertainty of the eþe− background level. We estimate
the total systematic uncertainty to be 13%.
From Nsig, we determine

Γ̃γγB(Xð3872Þ → J=ψπþπ−) ¼ 5.5þ4.1
−3.8ðstatÞ � 0.7ðsystÞ eV:

To set a limit on Γ̃γγ , we need BðX → J=ψπþπ−Þ. We
derive an upper limit, using the measured products of
B-meson decay branching fractions and the Xð3872Þ decay
branching fractions BðBþ → KþXÞBðX → J=ψπþπ− and
other specific final states) [37]. With the measured lower
limit [24,35,38], this gives 0.032 < BðX → J=ψπþπ−Þ <
0.061 at 90% C.L. Using the Feldman-Cousins method for
three observed events and 0.11 background, we obtain
0.995 < Nsig < 7.315 at 90% C.L. This, with Eq. (9),
divided by BðX → J=ψπþπ−Þ, gives the Γ̃γγ range: 20–
500 eV. This is consistent with values predicted for the cc̄
model [6,8]. For a comparison of experimental results with
non-cc̄ models, we must wait for improved calculations in
the future.
No events consistent with Xð3915Þ → J=ψπþπ− are

observed. This, combined with past measurements
[9,39], indicates no excess of G-parity-violating decays
of Xð3915Þ.
In summary, we find the first evidence for Xð3872Þ

production in two-photon γ�γ interactions. We observe
three Xð3872Þ candidates with a significance of 3.2σ
and an estimated yield of 2.9þ2.2−2.0ðstatÞ � 0.1ðsystÞ.
From this, we obtain Γ̃γγB(Xð3872Þ → J=ψπþπ−) ¼
5.5þ4.1−3.8ðstatÞ � 0.7ðsystÞ eV, assuming the Q2 dependence
of a cc̄ meson model. With future advances in calculations
of Γ̃γγ for non-cc̄ states and higher luminosities accumu-
lated by Belle II, we expect this method will clarify our
understanding of the Xð3872Þ.
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