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We initiate an exploration of the conformal bootstrap for n > 4 point correlation functions. Here we
bootstrap correlation functions of the lightest scalar gauge invariant operators in planar non-Abelian
conformal gauge theories as their locations approach the cusps of a null polygon. For that we consider
consistency of the OPE in the so-called snowflake channel with respect to cyclicity transformations
which leave the null configuration invariant. For general non-Abelian gauge theories this allows us to
strongly constrain the OPE structure constants of up to three large spin Jj operators (and large polarization
quantum number lj) to all loop orders. In N ¼ 4 we fix them completely through the duality to null
polygonal Wilson loops and the recent origin limit of the hexagon explored by Basso, Dixon, and
Papathanasiou.
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Introduction.—The numerical conformal bootstrap [1] is
by now a well-established physics tool, often leading to the
best determination of critical exponent relevant for real-
world experiments. The so-called analytical conformal
bootstrap explores a corner of the bootstrap—usually the
very Lorentzian domain—to derive universal analytical
results for general conformal field theories or general
conformal gauge theories.
A beautiful example is the work of Alday and Bissi [2].

They found the planar N ¼ 4 structure constant between
the lightest single trace scalars of the theory and the leading
twist single trace operators with large spin J as

Ĉ∘∘• ≃N ∘∘•Γ
�
1 −

1

2
γ

�
e−

1
2
ðf ln 2þgÞ ln J: ð1Þ

Here and below, the hat in Ĉ stands for the all loop structure
constant normalized by the tree level result and N ∘∘• is a
coupling dependent (but spin independent) normalization
constant (which bootstrap arguments will always be insen-
sitive to), [3]. The functions f and g are, respectively, the
cusp and collinear anomalous dimensions. They show up in
the anomalous dimension γ of the leading twist operators at
large spin J, which exhibits logarithmic scaling [4] and
behave as

γ ≃ fðλÞ lnðJÞ þ gðλÞ ð2Þ

in any gauge theory. Although extensively checked in
N ¼ 4, where we have abundant perturbative data, the
derivation is really a bootstrap one and as such the
prediction (1) is actually expected to hold for any large
N conformal gauge theory.
In principle, the study of all 4 point correlation functions

contains information about all the CFT data. In practice
most bootstrap studies focus on a single correlator or on a
coupled system involving a few 4 point correlators. Here
we propose to use higher point functions as well. Since
they contain, in their OPE, infinitely many 4 point
correlation functions, we can expect that a great deal of
information can be extracted from them.
Wewill obtain several new analytic results akin to Eq. (1)

but involving several spinning operators, namely, Eqs. (16)
and (20). Our results will be valid for general conformal
gauge theories in the planar limit but our testing ground will
once again be planar N ¼ 4 SYM. Better understanding
the various dualities relating scalar correlation functions,
null polygonal Wilson loops (WL), gluon scattering ampli-
tudes and large spin correlation functions [5–10] in this
gauge theory is another motivation for these bootstrap
exercises. Correlation functions correspond to AdS closed
string scattering and are nicely built out of integrable
hexagons [11] while null WL can be depicted as open
string partition functions and can be constructed out of
integrable pentagons [12]. We hope these explorations will
lead to a unifying description of both.
Kinematics.—The OPE of two operators on the light

cone was written around 50 years ago [13]:
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Oðx1ÞOðx2Þ ∼
Cð2x12 · ∂ϵÞJ

ðx212Þf½2Δϕ−ðΔ−JÞ�=2g 1F1

�
Δþ J
2

;Δþ J; x21 · ∂x1

�
OΔ;Jðx1; ϵÞ; ð3Þ

where C is the OPE coefficient. Here ϵ is a polarization
vector and we should only keep the leading terms in x212.
This operator identity can be used to derive integral
representations for conformal blocks by applying it once,
twice, or three times in a 4, 5, and 6 point correlator,

respectively. After these multiple OPEs end up with the
conformal block as the action of a few 1F1 operators on a
spinning 3 point function which in turn is completely fixed
by conformal symmetry [14]:

hOðx1; ϵ1Þ…Oðx3; ϵ3Þi ¼
X
lij

Cl12l13l23
J1J2J3

VJ1−l12−l13
1;23 VJ2−l12−l23

2;31 VJ3−l13−l23
3;12 Hl12

12H
l13
31H

l23
23

ðx212Þ½ðτ1þτ2−τ3Þ=2�ðx213Þ½ðτ1þτ3−τ2Þ=2�ðx223Þ½ðτ2þτ3−τ1Þ=2� ; ð4Þ

where ϵi are the polarization vectors, τi ¼ Δi þ Ji are the
conformal spin of the operators, and the V and H tensors
are recalled in the Supplemental Material [15]. The integers
lij parametrize the various possible tensor structures where
the polarizations vectors show up and we simply call them
polarizations. Their range is such that all exponents in
Eq. (4) are non-negative. (The 5 point block only depends
on two spins J1, J2 and a single nonzero polarization
l≡ l12.) Finally, we use the standard integral representation
for each 1F1 to obtain a useful expression for the conformal
blocks

Fn ¼ kinn

Z
1

0

½dy1�…½dyn−3�intn; ð5Þ

where the explicit expressions for the kinematical prefac-
tors, integrands, and measure are summarized in the
Supplemental Material [15].
Correlation functions of 5 and 6 points depend on 5 and

9 independent cross ratios, respectively. For the 5 pt
function, a convenient choice are the cross ratios [18]

u1 ≡ x212x
2
35

x213x
2
25

; x2ij ≡ ðxi − xjÞ2; ð6Þ

while all other four cross ratios are trivially obtained by
simply shifting the indices here,

ui ≡ ui−1jxi→xiþ1
; ð7Þ

where i ¼ 2, 3, 4, 5; see Fig. 1. These cross ratios contain a
single nearest neighbor distance [x12 in Eq. (6)]. The light-
cone OPE in the channel 12 and 34 channel projects into
leading twist contributions and can be achieved by taking
u1, u3 → 0; see Fig. 2. For x215; x

2
45 → 0 (or u4, u5 → 0) we

are further dominated by large spin operators. Then the
leading twist blocks simplify dramatically into a simple
product of Bessel functions

F5 ≃
ð1 − u2Þl

π

Y2
i¼1

22JiþγiJ
1
2

i

u−½ð2lþγiþ1Þ=4�
1−i

Klþ½ðγiþ1Þ=2�ð2Ji
ffiffiffiffiffiffiffiffi
u1−i

p Þ:

ð8Þ

At this point, the polarization l is still finite; in the full null
pentagon limit where all x2i;iþ1 → 0 (i.e., all ui → 0) we
project into the limit of large polarization further simplify-
ing these Bessel functions into simple exponentials, see
(A9) in the Supplemental Material [15].
For 6 point functions we define 6 cross ratios uj through

Eqs. (6) and (7), where i now runs up to 6 in the second
relation. The remaining 3 cross ratios ðU1; U2; U3Þ which
parametrize the 6 point functions are

U1 ≡ x213x
2
46

x214x
2
36

; U2 ¼ U1jxi→xiþ1
; U3 ¼ U2jxi→xiþ1

;

see Fig. 1. Again, we can explore a null hexagon limit by
taking all consecutive points to become null separated. First
we take 12, 34, and 56 to become null by taking u1, u3, u5
to zero; this projects into leading twist operators (with finite
spins J1, J2, J3) in these three OPE channels. Next we take

(a) (b)

FIG. 1. (a) We pick the five independent cross ratios for the 5 pt
function, as u1 represented here plus its four cyclic images.
(b) For the 6 pt function, we choose the nine independent cross
ratios as u1 (U1) represented here plus its five (two) cyclic
images.
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23, 45, and 61 to become null by taking u2, u4, u6 to zero;
this projects into large spins Ji ≫ 1; see Fig. 3. We
consider a corner of this limit where we also take 24,
46, and 62 to become null; see Fig. 3. If they become null
with the same rate the conformal blocks simplify consid-
erably in this limit and are dominated by large spin Ji,

F6 ≃
Y3
i¼1

22Jiþγi J
1
2

iKli−1−liþ½ðγi−γi−1Þ=2�ð2Jiþ1

ffiffiffiffiffiffiffiffiffi
U2−i

p Þ
U−½ðγi−γi−1þ2li−2li−1Þ=4�

2−i ðU2−i − u2iÞ−li−1
; ð9Þ

where l1 ¼ l23, l2 ¼ l13, l3 ¼ l12 are kept finite and where
all indices are understood in the cyclic sense with respect to
their range, so that U−2 ¼ U3−2 ¼ U1 and so on. We
denote this limit—where all cross ratios vanish with the
same rate—as the generalized origin limit. Now, if we take
the diagonals to approach the null limit faster than the
perimeter, then Ui ≪ ui and we are dominated by small
polarizations, lij ¼ 0. We will not explore this interesting
limit here. If, on the contrary, we take the perimeter to
become null faster than the inner diagonals then ui ≪ Ui
and we are dominated by large polarizations. [Then we can
simplify the blocks into exponentials as in the 5 pt case, see

(A9) in the Supplemental Material [15].] This limit pre-
serves cyclicity and is the most natural one from a WL
duality point of view as we are first constructing the
polygon boundary and only then considering the simplify-
ing limit Ui → 0.
There is another set of cross ratios vi (ui;iþ1 in Ref. [18]),

vi ≡ x2i−1;ix
2
iþ1;iþ2

x2i−1;iþ1x
2
i;iþ2

; ð10Þ

which are completely local and valid for any polygon but
contain two vanishing distances (inconvenient when taking
a null limit at a time). We will use the single null distance
cross ratios ui to bootstrap the results which we present
using the local cross ratios vi.
Bootstrap.—Cyclic correlators: We consider n-pt func-

tions of the lightest single trace operator. Since we are after
a full null limit where the various external points approach
the vertices of a null polygon, it is convenient to make
cyclicity manifest by stripping out a cyclic space-time
dependent factor. For example, in planar N ¼ 4 SYM
we consider n-point functions of 200 operators Oj ∝
tr½ðyjÞAϕAðxjÞ�2 and write

�Yn
i¼1

Oj

�
¼

Yn
i¼1

yi · yiþ1

ðxi − xiþ1Þ2
×Gn: ð11Þ

Then Gn is a cyclic function of the conformal cross ratios
alone [19]. We pick the normalization such that Gn ¼
1þOðλÞ at tree level. The simplest cyclic correlator is G4

which in the null square limit was bootstrapped in Ref. [2].
Cyclicity (u ↔ v) combined with the large spin limit
described in Eq. (1) fixes the correlator to be

G4≃eΣ
4
i¼1

lnvi½ðg=4Þ−ðf=16Þlnviþ1�

×ðN ∘∘•Þ2
Y4
i¼1

e−ð4=fÞð∂2=∂ lnvi∂ lnviþ1Þ
Y4
i¼1

Γ
�
1−

g
2
þf
4
lnvi

�
;

ð12Þ

where the vj relate to the conventional 4 pt function cross
ratios as v1 ¼ v3 ¼ v and v2 ¼ v4 ¼ u [20].
5 pt function: The bootstrap of the cyclic 5 pt functionG5

in the null polygon limit follows closely the 4 pt function
bootstrap of [2]. We plug a perturbative ansatz

P̂∘•• ≃
X∞
k¼0

λk
X
ik

ck;i1;i2;i3 × lni1J1lni2J2lni3l ð13Þ

for the relevant combination of structure constants

P̂∘•• ¼ Ĉ∘••ðJ1; J2; lÞĈ∘∘•ðJ1ÞĈ∘∘•ðJ2Þ; ð14Þ

arising in the OPE decomposition of the 5 pt function

Leading twist

Large spin

FIG. 3. Consecutive 6 pt limits: u1;3;5 → 0 projects into leading
twist; u2;4;6 → 0 projects into large spin; finally Ui → 0 is
controlled by structure constants with large lij.

Large spin

Leading twist

FIG. 2. Each time we take consecutive points xi and xiþ1 to
become null separated, we have ui → 0. We can thus construct a
full null pentagon sequentially: u1;3 → 0 projects into leading
twist; u4;5 → 0 projects into large spin; finally u2 → 0 is con-
trolled by structure constants with large l.
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G5 ≃
Z

∞

0

1

4
P̂∘••u1þf½γðJ1Þ�=2g

1 u1þf½γðJ2Þ�=2g
3 F̌5dj1dj2dl; ð15Þ

and compute this object to any desired order in perturbation
theory [21]. The integrals involved are very similar to those
arising in the 4 pt function case of Ref. [22], see
Supplemental Material [15].
In this way we obtain G5 in the polygon limit expressed

in terms of the unfixed constants ck;i1;i2;i3 in the structure
constants (13) and of the collinear and cusp anomalous
dimensions appearing in Eq. (2). Now, because we picked a
particular OPE channel for the decomposition [see
Fig. 2(b)] the whence obtained result will not be

automatically cyclic. Imposing cyclicity (i.e., invariance
under ui → uiþ1) will thus strongly constrain the unfixed
constants ck;i1;i2;i3 , resulting in

Ĉ∘•• ≃N ∘••e−f½fðλÞ�=4g½ln2lþln 4 lnðJ1J2Þ�−f½gðλÞ�=2g ln l: ð16Þ

This all loop result for the large spin and large polarization
behavior of the OPE coefficients involving two spinning
operators is the counterpart of Eq. (1) with a single spinning
operator [23]. Having completely constrained the structure
constants in the OPE decomposition, we can then write
down the correlator itself as

G5 ≃ eð−f=16ÞðΣ
5
i¼1

ln viÞ2þΣ5
i¼1

ln vi½ðg=4Þþðf=4Þ ln viþ2�N ∘••ðN ∘∘•Þ2
Y5
i¼1

e−ð4=fÞð∂2=∂ ln vi∂ ln viþ1Þ
Y5
i¼1

Γ
�
1 −

g
2
þ f

4
ln vi

�
: ð17Þ

We interpret it physically in the next section. We compared
our results with perturbative one-loop results in the
literature. In the limit of large spin and polarization, the
correlation function (17) agrees with the one-loop compu-
tations of Ref. [26] and the structure constant (16) agrees
with the perturbative computations of Ref. [27].
6 pt function: For the 6 pt function we focus on the origin

limit, where we plug the ansatz

P̂••• ≃
X∞
k¼0

λk
X
ik

ck;i1;…;i6

Y3
n¼1

lninJnlninþ3l4−n ð18Þ

(i1 þ i2 þ i3 ≤ k; i1 þ � � � þ i6 ≤ 2k) for the relevant com-
bination P̂••• ¼ Ĉ•••ðJ1; J2; J3; l1; l2; l3Þ

Q
3
j¼1 Ĉ

∘∘•ðJjÞ
appearing in the OPE decomposition

G6 ≃
Z

∞

0

1

8
P̂•••u1þf½γðJ1Þ�=2g

1 u1þf½γðJ2Þ�=2g
3 u1þf½γðJ3Þ�=2g

5

× F̌6

Y3
i¼1

djidli; ð19Þ

where the block is given by (A10) and we impose cyclicity
(i.e., invariance under ui → uiþ1 and Ui → Uiþ1). At loop
order k, we find that all power of logs in Eq. (18) from
degree k up to 2k are fixed, while the remaining constants
are such that only the three variables Lj ≡ 2 logðJjÞ −
logðlj−1Þ − logðlj−2Þ show up. That is, cyclicity fixes
the large spin and large polarization structure constant
to be

Ĉ••• ≃N •••eΣ
3
i¼1

f½fðλÞ�=2g ln Ji ln½ðJiliÞ=ð2liþ1liþ2Þ�

× exp

�
−
fðλÞ
8

X3
i¼1

ðLjÞ2 þ
X
k≥1

λkPkðL1;L2;L3Þ
�
;

ð20Þ

which translates into the associated 6 pt function in the
origin limit as

Ĝ6 ≃ eΣ
6
i¼1

ðf=16Þ ln vi ln viþ3−ðf=8Þ ln vi ln viþ1þðg=4Þ ln viN •••ðN ∘∘•Þ3
Y6
i¼1

e−ð4=fÞð∂2=∂ ln vi∂ ln viþ1Þ
Y6
i¼1

Γ
�
1 −

g
2
þ f

4
ln vi

�

× e−f½fðλÞ�=8gΣ
3
i¼1

ðlogUjÞ2þΣk≥1λ
kPkðlogU1;logU2;logU3Þ; ð21Þ

where Pk are undetermined totally symmetric polynomials
of three variables of degree k. In the original ansatz (18) we
had polynomials of twice as many variables and twice the
degree; see Table I.
WL relation.—In the null polygon limit all correlation

functions bootstrapped here can be compactly written as [18]

Gn ¼ ðSudakovÞn × ðJRecoilÞn ×Wn: ð22Þ

The first factor contains the leading divergences of the
correlator developed as it approaches the null polygon limit.
These physical divergences are identified with UV cusp
divergences of the dual null polygonal WL [18] or IR
divergences of the dual gluon scattering amplitudes [28] (in
N ¼ 4 SYM). This Sudakov factor is given in magenta in
first lines in our expressions (12), (17), and (21) and
precisely matches with the prediction of Ref. [18].
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The second factor should be identified with a subtle
backreaction effect: as the correlation function insertions
become null separated, fast particles will propagate
between consecutive insertions thus dynamically generat-
ing a WL. However, these charged particles interact with
each other and get pulled towards each other producing a
recoil effect which needs to be taken into account. This J
recoil factor is written in blue in the second line in our
expressions (12), (17), and (21). It was given in Ref. [18] at
two loops and derived to all loops for n ¼ 4 by Alday and
Bissi [2]. Here we derived its all loop expression for n ¼ 5
and n ¼ 6; our results agree with the two loop predictions
of Ref. [18]. Note that the J recoil factor and the Sudakov
factor only depend on the local cross ratios vi, which go to
zero in the null polygon limit. The n > 6 extrapolation of
our findings seems obvious as well.
Finally, we have the renormalized conformal WL factor

Wn, which is finite as we approach the null limit. It is equal
to 1 for n ¼ 4, 5 since there are no cross ratios to
be constructed out of null squares or pentagons while
for n ¼ 6 it only depends on the three finite cross ratios Ui
and is directly related to the hexagon null WL or 6 point
MHV gluon scattering amplitude in planar N ¼ 4 SYM.
(In the notation of Ref. [29], we expect W6 ¼ e2E .) This
WL factor is given (in green) in the third line in Eq. (21) in
the limit where allUi are taken to be very small. Now, in the
recent work of Ref. [29] it was observed that in this limit
the WL expectation value in planar N ¼ 4 SYM exponen-
tiates into a simple quadratic form in lnðUjÞ with coef-
ficients given in terms of two functions Γoct and Γhex, which
are explicitly given [30]. We conclude that our symmetric
polynomials are simply quadratic and read

X
l

λlPl ¼ 2C0 þ
3Γcusp − Γoct − 2Γhex

12

X3
j¼1

ln2ðUjÞ

−
Γoct − Γhex

12

X
j≠k

lnUk lnUj; ð23Þ

thus fixing the large spin, large polarization structure
constants C••• to all loop orders in this gauge theory.
(Here Γcusp ¼ f=2 is the fundamental cusp anomalous
dimension.)
Conclusion.—We explored full light-cone OPE limits in

5 point and 6 point functions in large N gauge theories. In

these limits, the operators approach the vertices of null
polygons and the correlators are dominated by the
exchange of single trace leading twist operators with
large spin.
Five point correlation functions (and corresponding large

spin structure constants C••∘) can be fully determined to all
loops in this limit [33]. Six point functions around the
origin limit (and corresponding structure constants C•••

involving large spins and polarizations) are strongly con-
strained—see Table I—in generic gauge theories and
totally fixed in N ¼ 4 super Yang-Mills through the
relation to the origin limit of null polygonal WLs [29].
We believe we are only scratching the surface of a very

promising precise connection between (integrated) corre-
lation functions and (integrated) WL. It would be very
interesting, for instance, to consider a systematic expansion
of correlation functions around the large spin limit and
large polarizations considered here and see how this related
to the expansion around the origin in the WL side. And of
course, there is a plethora of physical WL-amplitudes limits
one could consider and translate for the correlation func-
tion side.
We explored the conformal bootstrap for 6 point func-

tions by OPE expanding the external operators in pairs and
then considering the resulting spinning 3 point function.
This is the so-called snowflake decomposition [35].
Another OPE decomposition is the so-called comb
decomposition where OPEs are taken in a sequential
way. Conformal block in this limit can be found in
Refs. [35–37]. Could further constraints from the comb
decomposition fix the correlator in the origin limit or
perhaps shed light on the quadratic truncation in logUi

found in Ref. [29]? The comb decomposition reminds us of
the POPE decomposition [12], where each pentagon is
concatenated after another; it might be the natural decom-
position to recover the WL collinear limit.
We hope these games will also pave the way towards a

unified integrability description of open and closed strings
in AdS=CFT since they relate closed string scattering
(correlation functions) to open strings partition functions
(WL). Recovering the all loop large spin 3 point functions
results derived here through the hexagon formalism [11]
should be very illuminating in this regard. Of course, to
make progress we will also need more perturbative data. In
the open string pentagon OPE program [12], for instance,
such perturbative data was key in validating several
integrability based conjectures, see, e.g., Ref. [38].
Hexagonal and heptagonal WLs have been computed to
mind-blowing perturbative orders; see Ref. [39] for a recent
review. The same cannot be said about higher point
correlation functions. Apart from some important n ¼ 5
two loop integrand results in Ref. [28] and the one loop
integrated correlators in Ref. [26], virtually nothing is
known about n > 4 correlators. The 2-loop integrated 6 pt
function, for instance, would be extremely useful for

TABLE I. Number of free parameters in C••• at large Ji, lij.

Loop order Perturbative ansatz (18) After cyclicity

1 8 2
2 53 4
3 243 8
4 708 13
5 1862 20
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checking any integrability-bootstrap based formulation
since at 1-loop things are often misleadingly simple.
It would be interesting to study the case where the OPE is

dominated in some channels by a finite number of
exchanged operators. This would be a generalization of
Refs. [40,41] to higher a number of points.
The exploration of null pentagons and hexagons pro-

vides us with a plethora of exact results which seem hardly
attainable through the 4 point function alone. Mia’s advice,
don’t be a square seems to pay off.
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