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We study signatures of quantum chaos in ð1þ 1ÞD quantum field theory (QFT) models. Our analysis is
based on the method of Hamiltonian truncation, a numerical approach for the construction of low-energy
spectra and eigenstates of QFTs that can be considered as perturbations of exactly solvable models. We
focus on the double sine-Gordon, also studying the massive sine-Gordon and ϕ4 model, all of which are
nonintegrable and can be studied by this method with sufficiently high precision from small to intermediate
perturbation strength. We analyze the statistics of level spacings and of eigenvector components, which are
expected to follow random matrix theory predictions. While level spacing statistics are close to the
Gaussian orthogonal ensemble (GOE) as expected, on the contrary, the eigenvector components follow a
distribution markedly different from the expected Gaussian. Unlike in the typical quantum chaos scenario,
the transition of level spacing statistics to chaotic behavior takes place already in the perturbative regime.
Moreover, the distribution of eigenvector components does not appear to change or approach Gaussian
behavior, even for relatively large perturbations. Our results suggest that these features are independent of
the choice of model and basis.
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Introduction.—The physics of nonintegrable quantum
systems has been successfully described by quantum chaos
theory, which states that their spectral statistics are given by
random matrix theory (RMT), i.e., exhibit the same behavior
as matrices whose elements are randomly chosen from a
Gaussian distribution. These conjectures [1–3] have been
verified for a broad class of single-particle models, where
they have been explained in terms of semiclassical periodic
orbit theory [4,5]. More recently research focus has shifted to
many-body systems [6–16], where RMT predictions have
been verified numerically and in certain cases even analyti-
cally [17,18]. Chaoticity tests in quantum many-body
models are, however, almost exclusively limited to discrete
(lattice) models, leaving continuous models unexplored.
Among them, relativistic quantum field theories (QFTs)
and their dynamics lie at the cornerstone of important open
questions of theoretical physics, like the black hole infor-
mation paradox [19], making the study of ergodicity and
chaos in QFT a topic of fundamental interest.
Significant progress in this direction has been made

based on new theoretical concepts and indicators [20–22].
Nevertheless, the emergence of quantum chaos in QFT
remains poorly understood in terms of the more traditional
measures of level spacing and eigenvector statistics [23].
Studying level spacing statistics is the best way of detecting
level repulsion, the characteristic property of random
matrix spectra. On the other hand, a Gaussian distribution
of eigenvector components is an important indication of
validity of the eigenstate thermalization hypothesis (ETH)
[24,25], which explains how thermalization emerges from
the dynamics of nonintegrable quantum systems [26].

The main obstacle in performing chaoticity tests in QFT is
that, unlike for lattice models of condensed matter physics,
QFT models are continuous and thus live in an infinite
dimensional Hilbert space. Therefore, exact computation of
energy spectra is not an option for nonintegrable models, and
we inevitably resort to approximate numerical methods. The
challenge is then to achieve sufficiently high accuracy in a
sufficiently large part of the spectrum, so that a statistical
analysis is possible and reliable. An ideal method for this
task is the “truncated conformal space approach” (TCSA)
[27–29], more generally the Hamiltonian truncation method
[30,31]. The TCSA is based on the algebraic toolkit of
conformal field theory (CFT) and insights from renormal-
ization group theory, which can capture efficiently non-
perturbative effects in the low-energy spectrum, and is
especially suitable for ð1þ 1ÞD models. A pioneering study
of quantum chaos indicators using this method was pre-
sented in Ref. [32] for the tricritical and tetracritical Ising
field theories, demonstrating that their level spacing statistics
agree with the theoretical expectations in both the integrable
and nonintegrable case, and observing their crossover for
varying parameters.
In this Letter we study two independent and equally

important signatures of quantum chaos, the distribution of
level spacings as quantified by the consecutive level
spacing ratios r̃ [33,34] and the distribution of eigenvector
components. We study a class of ð1þ 1ÞD models: the
sine-Gordon model (SG), which is integrable, and the
double sine-Gordon (DSG), massive sine-Gordon (MSG)
a.k.a. Schwinger-Thirring, and ϕ4 model, which are all
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nonintegrable. We verify that level spacings follow the
expected Poisson distribution for SG and Gaussian
orthogonal ensemble (GOE) distribution for DSG, MSG
and ϕ4 model to a very good approximation. GOE behavior
is actually observed already in the weakly perturbed CFT
regime, in contrast to what typically happens in single-
particle models. Surprisingly, we find that, even when the
level spacing distribution is close to GOE, the eigenvector
component distribution is markedly different from the
Gaussian found in RMT [35] (Fig. 1). On the contrary,
it exhibits at best exponential scaling followed by an
algebraically decaying tail, which contradicts the RMT
prediction. This last feature is robust and independent of the
model and parameter values. We validate our observations
by pushing the limits of TCSA’s potential to achieve high
accuracy and devising a reliable measure of truncation
error, which is crucial for distinguishing physical behavior
from numerical artifacts.
Models, method, and observables.—We consider the

following models: the SG with Hamiltonian HSG ¼
H0 þ λVβ, the DSG HDSG ¼ H0 þ λ1Vβ1 þ λ2Vβ2 , the
MSG HMSG ¼ H0 þ λVβ1 þm2U2, and the ϕ4 model
Hϕ4 ¼ H0 þm2U2 þ λU4, where

H0 ¼
1

2

Z
½π2 − ð∂xϕÞ2�dx;

Un ¼
1

n!

Z
ϕndx; Vβ ¼ −

Z
cos βϕdx: ð1Þ

The SG is a prototypical integrable QFT possessing
topological excitations [29,36–38] and is equivalent to
the massive Thirring model [39,40]. It has applications
in condensed matter and atomic physics [41] and has
been simulated experimentally [42,43]. The DSG is

nonintegrable and also topologically nontrivial [44–47].
Lastly, the MSG is equivalent to the Schwinger-Thirring
model, reducing to ð1þ 1ÞD QED at β ¼ ffiffiffiffiffiffi

4π
p

[48,49].
All the above models can be seen as perturbations of the

free boson CFT H0 by relevant operators V and as such
they can be studied using TCSA. This method yields
numerical approximations of the low-energy spectrum of
H ¼ H0 þ λV based on the simple idea of computing
the matrix elements of V in an energy-truncated basis
fjΦ0

ni∶E0
n ≤ Ecutg of H0 and diagonalizing the resulting

finite matrix approximation of H. If V does not couple
significantly the low- with the high-energy spectrum ofH0,
which is true for relevant perturbations, then the numerical
spectrum is expected to converge to the exact upon
increasing the truncation cutoff Ecut. TCSA has been
successfully applied to the SG [29,37,38,50,51] and
DSG [45,47] and recently also the Schwinger model, a
special limit of MSG [52], while a similar Hamiltonian
truncation method has been used for the ϕ4 model
[30,53–56].
Using TCSA we compute a low-energy part of the

spectra En and eigenvectors jΦni of the above models
for various parameter values and analyze their statistics.
More specifically, we compute the distributions of level
spacings sn ¼ Enþ1 − En, of consecutive level ratios rn and
r̃n defined as [33]

rn ¼ sn=sn−1; r̃n ¼ min ðrn; 1=rnÞ ð2Þ

and of eigenvector components cij ¼ hΦ0
i jΦji in the TCSA

basis. Since all models are time-reversal symmetric, the
corresponding RMT ensemble is the GOE where the r
distribution is PGOEðrÞ ∝ ðrþ r2Þ=ð1þ rþ r2Þ5=2 and that
of r̃ is the restriction of the latter to the interval [0, 1], with
mean value hr̃iGOE ≈ 0.536 [34]. Conversely, in integrable
models level spacings follow the Poisson distribution [57]
with hr̃iP ≈ 0.386. Compared to other tests of level spacing
statistics, r̃ has the advantage of being independent of the
local level density, therefore no “unfolding” [23] is neces-
sary. For the eigenvector component distribution, the RMT
prediction is Gaussian, resulting in the Porter-Thomas
distribution for their absolute values [35], while for
integrable models it is expected to be algebraic [58].
To minimize numerical errors we use truncated bases

much larger than in previous studies (∼85000 states at the
highest cutoff). Moreover, to ensure our results are suffi-
ciently accurate, we verify convergence using rather strict
truncation error estimates, based on measures of their
correlations at successive cutoffs (see figure captions and
the Supplemental Material [59]).
Level spacing statistics.—We start by analyzing the

statistics of r values. Figure 1(a) shows the distribution
PðrÞ for DSG at two different choices of parameter values,
one integrable ðβ1; β2Þ ¼ ð2.5; 2.5Þ (SG) and one non-
integrable ðβ1; β2Þ ¼ ð1.0; 2.5Þ. The parameters λ1, λ2 have

(a) (b)

FIG. 1. Statistics of level spacings and eigenvector components
in the double sine-Gordon (nonintegrable) and sine-Gordon
(integrable) model. (a) Change in the r distribution of DSG
from ðβ1; β2Þ ¼ ð2.5; 2.5Þ (integrable SG point) to ðβ1; β2Þ ¼
ð1.0; 2.5Þ (nonintegrable point) compared to the predictions for
integrable models (dashed blue curve) and to the RMT predic-
tions (red curve), respectively. Inset shows change in the average
of r̃ when varying β1. (b) Distribution of the absolute values of
eigenvector components jcijj for the same two points, in log scale
and log-log scale (inset). The GOE distribution of jcijj is
Gaussian. Instead, we observe that, although the level spacing
statistics of DSG is GOE-like, the statistics of jcijj is not.
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been chosen so that the energy gap between the ground and
first excited state is of the same order as the inverse system
size L−1 (more precisely, l1 ¼ l2 ¼ 1 where li ¼ mβiL and
mβ is the SG breather mass [59]). These values are within
the perturbative regime where convergence is optimal. We
observe that the two distributions agree quite well with the
Poisson and GOE distributions, respectively. The change of
statistics can be demonstrated by the mean value hr̃i for
varying β1 at fixed β2 [Fig. 1(a), inset]. Starting from the
Poisson value for β1 ¼ 0, hr̃i increases towards the GOE
value, fluctuating close and below it. The complete
dependence of hr̃i on both β1 and β2 is shown in Fig. 2
in the form of a “phase diagram.” The hr̃i is close to
Poisson along the SG lines (β1 ¼ 0, β2 ¼ 0 and β1 ¼ β2),
whereas it approaches hr̃iGOE in the areas away from
these lines.

By independently varying the perturbation strength
parameters λ1, λ2 at fixed ðβ1; β2Þ ¼ ð1; 2.5Þ (Fig. 3) we
find that hr̃i is close to hr̃iGOE even in the immediate
vicinity of the unperturbed CFT model, i.e., for λ1, λ2 → 0,
as long as the ratio λ1=λ2 is kept fixed at ∼1. This is
somewhat surprising given that chaoticity typically
emerges far from integrable points and outside the pertur-
bative regime. Chaotic hr̃i values can indeed be verified
from first-order perturbation theory results [Fig. 3(a)] [59].
The fluctuations of hr̃i can be partially attributed to the
relatively small energy window (2000 levels), as random
matrices of the same size display similar fluctuations.
Nevertheless, we notice that hr̃i is predominantly below
hr̃iGOE, meaning that this is still a transitional, not
completely chaotic behavior.
The differences between hr̃i at different cutoffs (Fig. 2)

are negligible, with the best convergence achieved for small
β1, β2. However, even if hr̃i converges at some cutoff to
hr̃iGOE, this does not necessarily mean that this is the
correct physical value, since a nonconvergent spectrum is
also likely to be RMT-like. For this reason, we check the
convergence using an error estimate based on the averaged
absolute differences of r̃ values between successive cutoffs
and verifying that the error decreases with increasing cutoff
[59]. We empirically find that increasing βi or li results in
larger truncation errors, making the numerical data less
reliable. Moreover, in TCSA convergence is achieved in the
lowest part of the computed spectra, with the truncation
effects increasing at higher levels. For the parameters of
Fig. 1, a sufficiently good level of convergence of r values
is achieved for the lowest ∼3000 levels at Ecut ¼ 42
(in units ε ¼ π=L).
Eigenvector statistics.—Let us focus on the statistics of

eigenvector components cij in DSG. Figure 1(b) shows the
distribution of their absolute values in log scale for the same
choice of parameters as in Fig. 1(a), one exhibiting Poisson
and the other GOE level spacing statistics. Despite the clear
difference in the latter, the eigenvector distributions are
practically the same in both cases and different from the
Gaussian prediction of RMT. In the bulk of the distribution
the scaling is at best exponential while the tails decay
slower, like an algebraic function. This is in strong contrast
with theoretical expectations for chaotic models [35]. To
eliminate truncation effects, we have again restricted the
analysis to the convergent low-energy part of the matrix cij.
To gain a deeper insight into this observation, we

look more closely into the structure of the matrix cij.
Figures 4(a)–4(e) show cij for DSG at increasing pertur-
bation strength l ¼ l1 ¼ l2. We observe that for small l, cij
is characterized by an approximately block-diagonal form,
which is easily explained by perturbation theory given that
the CFT spectrum is organized in degenerate energy shells
[59]. For increasing l this block structure fades away and
cij becomes more uniform, even though a pattern of fine
structure remains always visible.

FIG. 2. Density plot of hr̃i in DSG as a function of β1 and β2.
The model is nonintegrable with the exception of the three lines
β1 ¼ 0, β2 ¼ 0, and β1 ¼ β2, where it reduces to the SG. The hr̃i
is indeed close to hr̃iP (dark blue) along the SG lines and in their
vicinity, while it approaches hr̃iGOE (dark red) away from them.
Plots for different truncation cutoffs Ecut are included for
comparison (right). (Parameters: l1 ¼ l2 ¼ 1, energy window:
1000–3000 levels, Ecut reported at the bottom right corner of
each plot).

(a) (b)

FIG. 3. Dependence of hr̃i on the perturbation strength in DSG.
(a) Plot of hr̃i for λ1, λ2 → 0 as a function of the mixing ratio
x ¼ λ1=ðλ1 þ λ2Þ. (b) Density plot of hr̃i as a function of λ1 and
λ2. The SG lines correspond to λ1 ¼ 0 and λ2 ¼ 0. Note that
hr̃i ≈ hr̃iGOE even in the immediate vicinity of the unperturbed
CFT model. [Parameters: ðβ1; β2Þ ¼ ð1; 2.5Þ].
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Based on these observations, we analyze how the DSG
eigenvector distribution depends on l, whether it
approaches the RMT prediction when moving from weak
to strong perturbation, and how it changes from one block
to another. The distributions inside a single block exhibit
clearly exponential scaling in the bulk, still with slower
decaying tails [Fig. 4(g)]. The slope of this exponential
changes from block to block. The distribution in Fig. 1,
which corresponds to a large window including many
blocks, is actually a superposition of many exponential
distributions. There is no significant change when l
increases from 0 to ∼5, the maximum value for which
we achieved convergence [Fig. 4(h)]. In fact, the distribu-
tion remains unchanged even for larger l, where truncation
effects are non-negligible. At the same time, hr̃i ≈ hr̃iGOE
for any l≳ 1 and well convergent at least for l≲ 3
[Fig. 4(f)].
Comparing the eigenvector statistics of different models

in windows with hr̃i ≈ hr̃iGOE, we find that they generally
vary from model to model but are always different from
Gaussian and at best exponential [Fig. 5(b)]. The ϕ4 model,
in particular, deserves special attention. In this case, using
the CFT as the unperturbed model to construct the
truncation basis is inconvenient, so the massive Klein-
Gordon (KG) model HKG ¼ H0 þm2U2 is used instead
[30]. In contrast to the CFT basis, in KG there is no
degenerate shell structure. Nevertheless, the eigenvector
distribution is once again very different from Gaussian and
characterized by slowly decaying tails as in DSG. Lastly,
comparing the single-block eigenvector distributions in SG

at different β [Fig. 5(a)], we find that they are similar to
those of DSG. These results clearly show that the discrep-
ancy between the eigenvector distributions and RMT
prediction, in particular the presence of slowly decaying
tails, is robust under variations of the parameters, energy
window, model and truncation basis.
Discussion.—We have shown that, while the level

spacing statistics of the above studied nonintegrable
QFTs agree with RMT, their eigenvector component

(a)

(f)

(g) (h)

(b) (c) (d) (e)

FIG. 4. Dependence of spectral properties on perturbation strength. (a)–(e) Matrix plot of the eigenvector matrix jcijj of DSG at
different l ¼ l1 ¼ l2, in logarithmic scale. Only the low-energy part (top left corner) of the matrix is shown, which is fully convergent for
l ≤ 2, partially convergent for l ≈ 5 (lowest ∼3000 levels convergent), and poorly convergent for l ≈ 10. (f) Plot of hr̃i as a function of l
at different cutoffs (dotted: 38, dashed: 40, solid line: 42) for DSG (red) and SG (blue). (g) Distributions of jcijj in the last four boxes
shown in (a)–(e), labeled as 1–4. (h) Distribution of jcijj in the third largest box for different l. [Parameters: ðβ1; β2Þ ¼ ð1.0; 2.5Þ for
DSG, β ¼ 2.5 for SG.]

(a) (b)

FIG. 5. (a) Distribution of jcijj in SG in log and log-log scale
(inset) at different β from 0 (red) to 2.5 (blue). The exponential
scaling in the bulk is not a special property of the non-integrable
DSG but is also present in SG. (b) Comparison of jcijj
distributions in DSG (red), MSG (green), and ϕ4 model (gray),
always in windows with GOE spectral statistics. Even though the
ϕ4 model is expanded in a different and less exceptional basis
(KG), the distribution is still not GOE-like but clearly algebraic.
[Model parameters, hr̃i values: DSG: ðβ1; β2Þ ¼ ð1.0; 2.5Þ, l ¼ 1,
MSG: β ¼ 2.8, m ¼ 0.76, l ¼ 1 (hr̃i ¼ 0.519), ϕ4: λ ¼ 1.0,
m ¼ 1, L ¼ 7 (hr̃i ¼ 0.5)].
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statistics are markedly different from RMT predictions.
Both of the above features emerge already in the weakly
perturbed CFT regime and persist unchanged beyond that,
which suggests that they may be valid for any perturbation
strength. Indeed, there is no indication that the scaling of
the distributions changes with the perturbation, even when
the CFT shell structure disappears. Moreover, the qualita-
tive characteristics of the eigenvector distributions for
different models are similar, irrespective of integrability
and even for quite different choices of truncation basis. The
latter observation particularly rules out an explanation
based on exceptional features of the CFT basis. An
interesting open question is how the observed discrepancy
affects the validity of ETH in ð1þ 1ÞD QFT. Testing ETH
using Hamiltonian truncation methods is, however, a more
challenging problem, as it is supposed to hold in the
thermodynamic limit where the perturbation strength is
large and convergence of the spectra worsens. We hope to
investigate this question in the future.

The data presented in this work may be accessed
in Ref. [60].
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