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Symmetries are well known to have had a profound role in our understanding of nature and are a critical
design concept for the realization of advanced technologies. In fact, many symmetry-broken states
associated with different phases of matter appear in a variety of quantum technology applications. Such
symmetries are normally broken in spatial dimension, however, they can also be broken temporally leading
to the concept of discrete time symmetries and their associated crystals. Discrete time crystals (DTCs) are a
novel state of matter emerging in periodically driven quantum systems. Typically, they have been
investigated assuming individual control operations with uniform rotation errors across the entire system.
In this work we explore a new paradigm arising from nonuniform rotation errors, where two dramatically
different phases of matter coexist in well defined regions of space. We consider a quantum spin network
possessing long-range interactions where different driving operations act on different regions of that
network. What results from its inherent symmetries is a system where one region is a DTC, while the
second is ferromagnetic. We envision our work to open a new avenue of research on chimeralike phases of
matter where two different phases coexist in space.
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Symmetries, while they may be a simple concept, have
had a profound effect on many fields of physics and are
crucial in understanding many natural phenomena [1–3] as
well as the realization of many advanced technologies. This
includes our well-known phases of matter (solids, liquids,
and gases). Crystals as a solid with a periodic nature are one
of the most familiar examples of spatial symmetry breaking
[1,4–6]. One can also think of the temporal dimension and
whether such symmetry breaking occurs there [7–9]. In
fact, temporal symmetry breaking does occur in periodi-
cally driven nonequilibrium systems and the phase of
matter that arises is referred to as discrete time crystals
(DTCs) [10–30]. Recently the existence of DTCs has been
demonstrated in trapped ions [31], nitrogen-vacancy spin
impurities [32], nuclear spins in molecules [33], superfluid
quantum gases [34], ordered dipolar many-body systems
[35], and silicon doped with phosphorus [36].
In those recent demonstrations, to generate the DTC one

needs to apply individual spin rotations with a uniform
error across the entire system [10–14]. Of course there is no
reason that one needs to utilize a uniform drive acting on
the whole system. Instead the drive could be different for
different regions within the system. This is particularly
interesting as it means different phases of coexisting matter
could be engineered. In this Letter we investigate the effect
of regional driving on a system capable of supporting DTCs
and explore its dynamics. We show that multiple phases of

matter can coexist within the overall system. Such novel
phases of matter are analogous to chimera states in classical
nonlinear systems where synchronized and unsynchronized
phases coexist [37–40] even in the semiclassical regime
[41]. As such, we are going to consider “chimera DTCs”
consisting of a DTC and an alternate phase of matter
(ferromagnetic). We will generally begin with a DTC in a
quantum spin network and then apply a drive to a certain
region of that crystal to evolve it into the ferromagnetic
phase (alternatively one could start with the ferromagnetic
phase for the entire system and apply a drive to a certain
region to transform that region into a DTC). This is
depicted in Fig. 1(a). Both the original and the new phases
of matter coexist at the same time in different regions of
space (a chimeralike state) despite the spin-spin coupling
throughout the network.
Let us begin with a N-spin quantum network governed

by a time-periodic Hamiltonian of the form

ĤðtÞ¼

8>><
>>:
Ĥ1¼ℏgð1−ϵAÞ

P
l∈A

σxl þℏgð1−ϵBÞ
P
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P
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Jzlmσ

z
lσ

z
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P
l
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z
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with a total period T ¼ T1 þ T2 (Ĥ1 is applied for a time
T1 followed by Ĥ2 for a time T2). The nodes of our network
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are the individual spins at sites labeled by l ¼ 1;…; N.
Here σμl with μ ∈ fx; y; zg are the usual Pauli operators at
the lth site. Next g is a drive amplitude chosen such that
gT1 ¼ π=2. Our Hamiltonian Ĥ1 applies separate rotations
on the two well-defined spin network regions where we
allow for errors ϵA and ϵB, respectively. This is shown in
Fig. 1(a) as the blue region A and green region B. Further
the couplings Jl;m determine the connectivity of the net-
work, because they can be represented by an edge joining
the lth and mth nodes as depicted in Fig. 1. We also
consider the effect of disorderWz

l ∈ ½−W;W� drawn from a
uniform distribution with strength W. Finally, it is worth
mentioning that when ϵA ¼ ϵB ≪ 1 the whole system
retains its single DTC nature [11,12].
Now let us evaluate how we can manipulate these phases

of matter using regional drives. We consider the case where
the rotation arising from the drive on region A is close to π
(ϵA is small) while the drive on region B is effectively
turned off (ϵB close to one). The local magnetization
mz

lðnTÞ ¼ hσzl ðnTÞi at the lth site measured at strobo-
scopic times tn ¼ nT (with n being a natural number) can
then be used to monitor the breaking of the discrete time
translational symmetry and the emergence of DTC in a
given region of the network.
To investigate this stroboscopic behavior, we employ

the Floquet operator for a single drive period [42–45]
given by

F̂ ¼ exp

�
−
i
ℏ
Ĥ2T2

�
exp

�
−
i
ℏ
Ĥ1T1

�
: ð2Þ

The 2T periodicity of the DTC enables us to unveil the
symmetries of the system at times tn ¼ 2nT. Here,
the stroboscopic dynamics is generated by the square of
the Floquet operator F̂ 2 ¼ expð−2iĤeff

ϵA;2TT=ℏÞ with Ĥeff
ϵA;2T

being the systems 2T-effective Hamiltonian. Because of
Ĥeff

ϵA;2T structure we can use a high-frequency expansion
[44,45] for the driven system to express it in the closed
form Ĥeff

ϵ;2T ¼ ĤA þ ĤB þ ĤAB where
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Here we have assumed for convenience ϵA ≪ 1 and ϵB ¼ 1
(this simplification will be relaxed in our simulations).
The coupling Hamiltonian ĤAB is strongly dependent on

the operator θ̂l ¼ 2WlT2 þ 2T2

P
m∈B J

z
lmσ

z
m for the lth

sites in A [46]. Setting ϵA ¼ 0, the regions A and B are
decoupled at times tn ¼ 2nT. This indicates that each
region preserves the local operators σzl and its own
symmetries. Region A holds a Z2-Ising symmetry σzl ¼
−σzl which may be broken in B due to the disorder.
Remarkably for ϵA ≪ 1, Ĥeff

ϵA;2T breaks the Uð1Þ symmetry
in region A while ĤB associated with region B remains
conserved with ½ĤB; Ĥ

eff
ϵA;2T � ¼ ½σzl ; Ĥeff

ϵA;2T � ¼ 0. This cre-
ates the chimera DTC where two phases of matter emerges
in a network of spins.
To explore the dynamics (the emergence) of chimera

DTCswe consider a particular example of a one-dimensional
array of N ¼ 8 spins. Here the coupling strength between
spins is dependent on the distance they are apart with
coupling strength Jzlm ≡ J0=jl −mjα for the sites l and m.
While the geometrical arrangement of spin is one dimen-
sional, the parameter α determines the structure of the
network. For example, if α ¼ 0 the network is all-to-all
connected and for α ¼ ∞, it has nearest-neighbor coupling
only. It is important to note that our results aregeneral and can
be applied to other networks with more complex connectiv-
ities (see Supplemental Material [46]). Choosing an initial
state jΨð0Þiz ¼ j1; 1;…; 1iz which breaks the Z2-Ising
symmetry, we can now explore, as illustrated in Fig. 1(b),
the effect of ϵA ≪ 1 and ϵB ∼ 1 on the system’s magnetiza-
tion. Here we set T1 ¼ T2 ¼ T=2 and determine the mag-
netization at tn ¼ 2nT. Its dynamics is characterized by

the ratio δx ¼ ϵAπð1þ hcosðθ̂ÞiÞ=2J0T, where h� � �i is the
ensemble average. This indicates the balance between the
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FIG. 1. Chimera discrete time crystals in a spin network.
(a) Schematic illustration of the chimera time crystal in a spin
network. The top panel illustrates this network under the effect of
regional driving while the bottom panel shows the sublattice A
(blue region), which behaves like a discrete time crystal. In
contrast, the region B (green region) is in a ferromagnetic state.
(b) Illustrates a N ¼ 8 site spin chain where we apply regional
drivings. A π rotation is applied on region A spins l ¼ 0, 1, 2, 3
while small rotation is applied on the remaining spins that define
region B. Here, the black and yellow lines represent the couplings
Jzlm between the spins and the disordered potential Wl, respec-
tively. In the case of regional drive, the gray lines represent the
weak coupling between the regions A and B.
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effective transverse magnetic field felt by A due to the
coupling ĤAB, and the interaction strength J0. It has a critical
point at δcx ∼ 1. We employ two different values of ϵA ¼ 0.1,
0.03 to investigate the dynamics above and below that critical
point. The second term in Ĥeff

ϵA;2T can be neglected as
J0ϵA ≪ 1, however we need to consider disorder as another
factor in the DTCs emergence (disorder is essential for the
DTC to be stabilized under the imperfect rotations [12]). The
short-timemagnetization dynamics clearly shows two differ-
ent behaviors in regions A and B as shown in Figs. 2(a)
and 2(b) for the weak ðJ0T ¼ 0.072Þ, strong ðJ0T ¼ 0.2Þ
couplings respectively. In region A, the regional rotation
breaks the discrete time translational symmetry yielding the
DTC phase, while regionB retains its ferromagnetic phase. It
is also important to explore the long-time dynamics for
different system sizes in the weak and strong coupling
regimes which we show in Figs. 2(c) and 2(d). It is clearly
seen in this long-time regime that the DTCs melt [48–50].
Two coexistent phases of matter are still present.
It is important to explore the effect of rotation errors and

disorder on our chimera DTC. Such effects are more
prominent in the weak coupling regime. In Fig. 3 we plot
the magnetization’s dynamics for different values of ϵA and
disorder strengths Wl. These are chosen randomly in the
interval ½0;W�, where WT ¼ 0 correspond to the no
disorder case, while WT ¼ 2π is strong disorder. We
employ 100 realizations in determining our ensemble
average. In the regime δx < 1 (ϵA ¼ 0.03) our chimera

DTC emerges. Increasing W stabilized the DTC in region
A. This is not unexpected as Ĥeff

ϵA;2T can be seen as the Ising
model perturbed by an effective transverse magnetic field
ĤAB. The weaker the effective magnetic field (larger W),
the more stable the DTC is.
In more detail, in the absence of disorderWT ¼ 0, region

A feels a uniform transverse field with strength ℏπϵA=2T
and the value δx ¼ ϵAπ=J0T for ϵA ¼ 0.03 is effectively
close to the critical point. Because of the effect of the
transverse magnetic field, the paramagnetic phase wins
over the DTC phase as the time goes on, and the chimera
DTC transforms into a new chimera phase of paramagnetic
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FIG. 2. The short-time dynamics of the local magnetization
hσzl ðtÞi for a chimera DTC in the weak J0T ¼ 0.072 (a) and
strong J0T ¼ 0.2 (b) coupling regimes, respectively. Here,
we have chosen ϵA ¼ 0.03, ϵB ¼ 0.9, gT ¼ π, α ¼ 1.51, and
WT ¼ 2π with an initial state jΨð0Þiz ¼ j1; 1;…; 1i. Next the
long-time dynamics of the regional magnetization Mz

A=B ¼
2=N

P
l∈A=Bhσzl ðtÞi are shown for weak (c) and strong (d) cou-

plings and different system sizes N ¼ 6, 8, 10.
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FIG. 3. The stroboscopic evolution (a) of the ensemble aver-
aged local magnetization hσzl ðnTÞi over 100 realizations of
disorder for a chimera DTC in the weak coupling regime over
short times. Here two specific values of ϵA are chosen ðϵA ¼
0.03; 0.1Þ with disorder strengths WT ¼ 0; 2π. The other param-
eters are the same as in Fig. 2 including jΨð0Þzi ¼ j1; 1;…; 1i as
our initial state. In (b) we show the long-time dynamics of the
regional magnetization Mz

A=B for errors ϵA ¼ 0.03, 0.1 (left, right
panels), respectively. Here, the blue and green curves represent
the regional magnetization Mz

A of region A for disorder strengths
WT ¼ 0; 2π respectively, while the orange and red curves
represent the regional magnetization Mz

B in region B for
WT ¼ 0; 2π. The regional magnetization Mz

A is periodic with
period 2T, whereas Mz

B is constant under the effect of disorder.
This leads to the coexistence in space of the DTC and ferro-
magnetic phase.
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and ferromagnetic phases. With disorder hcosðθ̂Þi ≈
hsinðθ̂Þi ≈ 0 meaning the magnetic field is effectively
suppressed. In this case, δx ¼ ϵAπ=2J0T remains effec-
tively small and the DTC phase of region A becomes stable.
These effects are shown in see Fig. 3(a). When δx > 1
(ϵA ¼ 0.1) the transverse magnetic field is dominant in the
effective Hamiltonian Ĥeff

ϵ;2T meaning the system exhibits
many-body Rabi oscillations. In the absence of disorder,
the local magnetization at each site of the region A
oscillates with the same frequency. On the contrary, the
disorder randomizes the frequencies of the Rabi oscillations
smoothing it out when the ensemble average is taken. Such
behavior is illustrated in Figs. 3(a) and 3(b) for the short-
and long-time dynamics in the weak coupling regime. As it
is shown in Fig. 3(a), in the absence of disorder the spins in
region B also oscillate with the same frequency. This means
that the disorder stabilizes the magnetizations in region B at
stroboscopic times.
The above analysis has shown that the chimera phase can

be observed from the magnetization dynamics of our
quantum system and is stable for δx < 1. It is useful at
this stage to focus our attention in the strong coupling
regime (less sensitive to rotational errors) to explore the
effect of long-range correlations and how they affect the
observed macroscopic behavior. The archetypical quantum
behavior is of course entanglement. Given our system
remains pure state throughout its evolution, we can evaluate
the degree of entanglement [51,52] between the two
regions A and B using the von Neumann entropy SBðtÞ ¼
−TrB½ρ̂BðtÞ ln ρ̂BðtÞ� where ρ̂BðtÞ ¼ TrA½jΨðtÞihΨðtÞj� is
the reduced density matrix of region B (other entanglement
measures could be used if desired). In our exploration of
entanglement in this chimera DTC we need to consider
both the effect of rotation errors ϵA;B and errors in the initial
state preparation. For the later case we will simply model

our initial state as jΨð0Þiz;θ ¼ e−i
P

l
ðθ=2Þσxl jΨð0Þiz, where

θ is the error. As jΨð0Þiz;θ≠0 are not eigenstates of ĤðtÞ we

expect interesting dynamics to arise. In Fig. 4(a) we plot the
regional magnetization Mz

A=B versus time for various α

(interaction range) by considering ϵA ¼ 0.03, ϵB ¼ 0.9,
and θ ¼ 0.2π with disorder strengthWT ¼ 2π. We compare
the magnetization dynamics for three different α’s
(α ¼ 0; 1.51;∞) where α ¼ 1.51 was chosen based on the
recent experiments [31]. The α ¼ 0 and α ¼ ∞ values
correspond to all-to-all coupling and nearest-neighbor cou-
pling respectively. Figure 4(a) shows that the chimeraDTC is
robust against errors and two phases of matter (DTC and
ferromagnetic) coexist for a long time that depends on the
interaction rangeα. This shows that the chimeraDTC ismore
stable for all-to-all coupling (α ¼ 0) where it has the longest
lifetime.
So far we have shown that the chimera DTC is robust

against errors in both rotations and state preparation. The
natural question that arises is how the degree of entangle-
ment between regions A and B varies with long-
range connectivity and the effect of rotation errors on it.
In Figs. 4(b) and 4(c) we plot the short- and long-time
entanglement dynamics for three α values. For times where
the DTC is stable [see Fig. 4(b)] the degree of entanglement
is small for short-range interactions ðα ¼ 1.51;∞Þ but
increases as more long-range interactions are included
(α ¼ 0). In the long-time limit, the DTC in region A melts
and the entanglement reaches a steady state value that
depends on the interaction range α. The reason are local
conserved quantities within the DTC phase that prevent
long-range correlations between regions A and B. When the
DTC in region A melts, quantum tunneling is possible
between the different localized states resulting in an
increase in entanglement between regions A and B. This
is shown in Fig. 4(c). Here it is important to compare our
results with the entanglement entropy for generic thermal
and many-body localized (MBL) states. If the system is
thermalized, the average entanglement entropy is predicted
to be hSi ∼ ½N lnð2Þ − 1�=2 ≈ 2.3 for N ¼ 8. On the con-
trary, in the MBL phase the predicted average entropy
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FIG. 4. In (a) we plot the ensemble average of the regional magnetizationsMz
A=B versus stroboscopic time for α ¼ 0; 1.51;∞. We have

used our typical strong coupling regime parameters: J0T ¼ 0.2; ϵA ¼ 0.03; ϵB ¼ 0.9, gT ¼ π, and with disorder strength WT ¼ 2π.
Next (b),(c) illustrate the short- and long-time entanglement SBðnTÞ dynamics. Our ensemble averaging utilizes 100 realizations of the

disorder with the initial state jΨð0Þiz;θ ¼ e−i
P

l
ðθ=2Þσxl jΨð0Þiz where θ ¼ 0.2π.
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should be hSi ∼ lnð2Þ ≈ 0.69. In our chimera DTC, the
interaction range α controls the degree of the correlations
between regions A and B. For all the α’s, the entanglement
entropy eventually converges to an intermediate value
hSi ∼ 1.23. This means that even when the DTC in region
A is melted, the entanglement entropy of our system lies
between the values of a fully thermal and MBL states.
In summary, we have shown how regional driving on

quantum spin networks can manipulate the phases of matter
associated with it. In particular we have demonstrated how
chimera DTCs can emerge using that regional driving and
are stable to imperfections. Of course, we are not restricted
to two regions and can apply drives in multiple regions to
generate even more complex chimeralike phases. We could,
for instance, create chimera phases composed of distinct
DTCs surrounded by ferromagnetic or even ergodic
domains. The separability of these distinct phase regions
is not required for the chimera DTCs to appear.
Entanglement can be present at the stroboscopic times
2nT. It is also interesting that in the chimera DTCs the
amount of entanglement is rather suppressed despite the
broad interactions across the spin network. This suggests
that the chimera DTCs may be used to control subsystems
of a spin network. Our results are experimentally realizable
with the quantum technologies available today in various
platforms including superconducting circuits, trapped ions,
and cold atoms.
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