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1LPTMS, CNRS, Université Paris-Saclay, 91405 Orsay, France
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We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of
vibrational modes, uncorrelated for different spins, serving as a model for dynamic nuclear polarization
protocols. We show that even when the many-body eigenstates of the system are ergodic, a sufficiently
strong coupling to the bath may effectively localize the spins due to many-body quantum Zeno effect. Our
results provide an explanation of the breakdown of the thermal mixing regime experimentally observed
above 4–5 K in these protocols.

DOI: 10.1103/PhysRevLett.126.120603

The thermalization of an isolated many-body quantum
system stems from two mechanisms. The first is dephasing,
i.e., the projection by the unitary dynamics of the initial
state onto the Hamiltonian eigenstates. The second is the
matching between the expectation value of physical observ-
ables in these eigenstates and those of the microcanonical
ensemble. This second property, called the eigenstate
thermalization hypothesis (ETH) [1–4], implies that if
the quantum state is a mixture of Hamiltonian eigenstates,
the system appears thermal. Consequently, one expects
that even in the presence of a drive and dissipation, a unique
effective temperature characterizes the stationary state
[5–9].
A celebrated confirmation of this scenario is the thermal

mixing reached in dynamic nuclear polarization (DNP)
[5,10], a protocol used for NMR applications. A sample,
doped with molecules possessing unpaired electron spins,
is exposed to a strong magnetic field, frozen at temperature
β−1 ∼ 1 K and driven out of equilibrium by microwave
irradiation at frequency ωMW. After one hour all nuclear
species in the sample (1H; 13C; 15N…) thermalize to a single
temperature β−1s , called spin temperature [10,11]. By tuning
ωMW, one can reach βs ≫ β, which strongly hyperpolarizes
the nuclear spins, an essential aim in NMR spectrometry
and imaging. Inconveniently, this regime disappears above
4–5 K and nuclear polarization becomes weak [12–14].
In this Letter, we show how a coupling to a local bath can

explain the thermal mixing breakdown and reveal finger-
prints of localization in this nonequilibrium steady state.
Such ergodicity breaking is not caused by a violation of
ETH, as in strongly disordered systems—a phenomenon
called many-body localization (MBL) [15–19]—but by a
competition between dephasing and system-bath interac-
tion that prevents the stationary state from being an
eigenstate mixture. This phenomenon is a many-body
analog of the quantum Zeno effect [20–26], where infi-
nitely frequent measurements impede the unitary evolution

of a single degree of freedom. Here the interaction with
bath modes, uncorrelated for different spins, plays the role
of the measurements. We show that going beyond the
traditional scheme of weak coupling to the bath [5–9,27],
through a recently proposed approach not relying on the
secular approximation [28–30], is necessary to account for
this type of localization.
The DNP arises from the steady state of N unpaired

electron spins. Their Hamiltonian reads [Fig. 1(a)]

ĤS ¼
XN
i¼1

ðωe þ ΔiÞŜzi þ Ĥdip: ð1Þ

ωe is the strong magnetic field along the z axis (Zeeman
gap). Δi is a small disorder from the random orientation of
the molecule where the spin lies and Ĥdip stands for the
dipolar interaction. The large magnetic field implies Ŝz ¼P

i Ŝ
z
i is conserved; hence the dipolar Hamiltonian gets

truncated as [6,10,31,32]

Ĥdip ¼
X
i<j

UijðŜþi Ŝ−j þ Ŝ−i Ŝ
þ
j − 4Ŝzi Ŝ

z
jÞ; ð2Þ

where Uij depends on the distance between the spins and
their orientation with respect to the magnetic field. The spins
are in contact with a thermal bath and driven by microwaves
through ĤMWðtÞ¼ω1½ŜxcosðωMWtÞþŜysinðωMWtÞ�. When
ωMW ≈ ωe, the electron spins reach a stationary state probed
experimentally by measuring the electron paramagnetic
resonance (EPR) spectrum. Two typical shapes can occur:
(i) A linear curve close to irradiation frequency [Fig. 1(b)].
Electrons are in thermal mixing, i.e., equilibrated at the
spin temperature β−1s and interacting via ĤS with a shifted
magnetic field ωe → ωe − h, where h ≃ ωMW. Through
hyperfine interaction with the electron spins, the nuclear
spins thermalizewith polarizationPn ¼ tanhðβsωn=2Þ (ωn is
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the nuclear Zeeman gap) [5,6,10]. (ii) A “hole burning” close
to irradiation [Fig. 1(c)] found by Bloch [33] for non-
interacting spins: the resonant spins (ωe þ Δi ≃ ωMW) are
brought to a high temperaturewhile off-resonant ones remain
at β−1. The hole-burning shape is recovered in the MBL
regime [5–8,27], revealing different local temperatures: the
nuclear species exhibit weak polarization not accounted for
by a single temperature.
The spin-temperature shape was observed long ago in the

EPR spectrum of Ce3þ in CaWO4 crystals [34]. More
recently, experiments on irradiated EPR spectrum retrieved
instead a hole-burning shape [12–14] above 4–5 K. In the
following, we argue that even in ETH systems, a bath of
uncorrelated modes triggers quantum jumps that can induce
localization if bath transitions prevail over dephasing. In
particular, we compute the EPR spectrum and show a
crossover from a spin-temperature to a hole-burning shape.
We interpret this crossover as a manifestation of a bath-
induced Zeno localization in the many-body eigenbasis of
fŜzig. As bath transitions become more effective when
raising temperature, curiously, this ergodicity breaking
happens in the high-temperature phase.
Effective dynamics due to the bath.—The electron spins

are dilute, so we assume they are in contact with vibration
modes B̂μ

i [35], Sec. V, that are uncorrelated (thus they
cannot induce effective interactions between spins):

Ĥint ¼
X

i¼1;…;N
μ¼x;y;z

Ŝμi ⊗ B̂μ
i : ð3Þ

Assuming the bath is equilibrated at temperature β−1, we
trace out the B̂μ

i variables in the full density matrix ρS⊗B and
write an effective evolution for the spin system density
matrix ρ ¼ TrBðρS⊗BÞ. The ensuing evolution is no longer
unitary but must still preserve the trace and semipositivity
of ρ. The most general Markovian dynamics must then be
of the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
form [25]:

_ρ ¼ −i½Ĥ; ρ� þ
X
α

ÂαρÂ
†
α −

1

2
fÂ†

αÂα; ρg; ð4Þ

where Ĥ is Hermitian and fÂαg is a set of jump operators.
To integrate the bath degrees of freedom [35], Sec. I, we
consider weak spin-bath coupling and perform a perturba-
tive expansion of the full unitary dynamics of ρS⊗B at
second order in Ĥint. The Born-Markov approximation
[25,48,49] yields an effective Markovian evolution for ρ.
The uncorrelated bath degrees of freedom are described by
a single equilibrium correlation function

γðωÞ ¼
Z

∞

−∞
dτeiωτhB̂μ

i ðτÞB̂μ
i ð0ÞiB ¼ hðωÞ

TðjωjÞ ; ð5Þ

where hðωÞ ¼ ð1þ e−βωÞ−1 enforces detailed balance,
while TðjωjÞ is the timescale of energy exchange ω with
the spins.
The Markovian approximation is not unique and in

general not in GKSL form (4). We implement the
Markovian prescription of [28–30], which leads to a
GKSL form setting Ĥ ¼ ĤS and

Âα ¼
X
n;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðωnmÞ

p
hmjŜμi jnijmihnj; ð6Þ

with α ¼ ði; μÞ and ωnm ¼ εn − εm are ĤS energy gaps. We
have three typical timescales TðjωjÞ: (i) T1 for transitions of
energy gap �ωe, giving the jump operators

Âx
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hðωeÞ
2T1

s
ðŜ−i þ e−βωe=2Ŝþi Þ;

Ây
i ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
hðωeÞ
2T1

s
ðŜ−i − e−βωe=2Ŝþi Þ ð7Þ

(ii) T� for transitions of finite energy jωj ≪ ωe, and
(iii) Tð0Þ for zero-energy transitions within the same
eigenstate, giving

Âz
i ¼

Ŝziffiffiffiffiffiffiffiffi
2T�p þ

�
1ffiffiffiffiffiffiffiffiffiffiffiffi
2Tð0Þp −

1ffiffiffiffiffiffiffiffi
2T�p

�X
n

hnjŜzi jnijnihnj: ð8Þ

The nonsecular jump operators (7), (8) [when Tð0Þ ≈ T�]
are well localized in space. The quantum trajectories result

FIG. 1. (a) Sketch of the system: N electron spins with dipolar
interactions of strength Uij in a strong inhomogeneous magnetic
field ωe þ Δi in contact with a thermostat are irradiated by
microwaves at frequency ωMW (wavy arrow). (b),(c) EPR
spectrum fðωÞ [defined via Eq. (11)] at Boltzmann equilibrium
(blue curve) and under microwave driving displaying two shapes
(orange curves). (b) The spin-temperature profile [10,34] with
linear behavior (dashed red line) of slope βs=2 close to resonance
ω ¼ ωMW. (c) The hole burning at resonance.
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from a competition between the unitary dynamics projec-
ting on thermal eigenstates and repeated measurements
performed by the nonsecular jump operators. If jump rates
dominate, thermalization is hampered in a way reminiscent
of the quantum Zeno effect.
This choice of jump operators contrasts with the

usual weak-coupling prescription [25,48,49], where a
GKSL [Eq. (4)] is recovered through an additional secular
approximation. The jump operators select only a given
transition energy ωnm between eigenstates jmi and jni:

Âsec
α ðωnmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðωnmÞ

p
hmjŜμi jnijmihnj: ð9Þ

The secular jump operators (9) are directly projected on the
eigenstates of ĤS, unlike jumps (7), (8), for which the
secular approximation is released. With these nonsecular
jumps, the system’s state gets projected on the Hamiltonian
eigenstates only if bath timescales T1, T� are long with
respect to dephasing. To emphasize the effect of the secular
approximation, we insert Eq. (9) into Eq. (4), yielding an
exponential decay of the off-diagonal elements (coher-
ences) in the eigenbasis:

_ρnm ¼ −
�
iωnm þ 1

Tnm

�
ρnm; ð10Þ

where iωnm is the dephasing due to the unitary evolution and
Tnm > 0 is the decoherence [35], Sec. I B originating from
the bath timescales. Therefore one can work in the Hilbert
approximation where the dynamics is projected on the
diagonal elements: it amounts to transit from one eigenstate
to the other with rates given in [35], Sec. I E. The nonsecular
dynamics (6) adds to the right-hand side of Eq. (10) entries
other than ρnm, with associated bath rates [35], Sec. I F,
allowing the existence of steady-state coherences.
Microwave drive.—In equilibrium, the steady state is in

practice accurately described by the Boltzmann distribution
with either choice of jump operators [28,50,51]. The non-
secular evolution brings drastic changes out of equilibrium:
the drive creates an imbalance that probes localization. In a
DNP protocol the system is irradiated by microwaves
described by ĤMWðtÞ. They induce local temperature inho-
mogeneities as resonant spins get hotter while others are
frozen by the low-temperature bath. The dynamics of the
rotating-frame density matrix eiωMWtŜzρðtÞe−iωMWtŜz → ρðtÞ
remains given by Eq. (4) with the shift Ĥ ¼ ĤS − ωMWŜ

z þ
ω1Ŝ

x [35], Sec. I D.
Numerical computation of the EPR spectrum.—We

compare the stationary states predicted by the Hilbert
dynamics with the ones obtained by the nonsecular
evolution Eq. (4) with jumps (7), (8) for uniform disorder
Δi ∈ ½−ðΔωe=2Þ; ðΔωe=2Þ� and Uij mimicked by indepen-
dent Gaussian distributions with zero mean and variance
U2=N. We fix Δωe ¼ 5 × 2π MHz, U ¼ 0.75 × 2π MHz

(note that ωe ¼ 93.9 × 2π GHz), where ĤS has ETH
statistics. We consider two temperatures; at high temper-
ature the bath timescales are short (Table I).
We compute numerically the steady-state density matrix

ρstat [53]. The Hilbert case amounts to a 2N × 2N linear
system, which for N ¼ 10 spins is treated by exact diago-
nalization. The nonsecular dynamics Eq. (4) is instead a
4N × 4N linear system requiring Krylov subspace methods
(biconjugate gradient-stabilized algorithm) [54]. To probe
the stationary statewe focus on the EPR spectrum: starting at
time τ ¼ 0, a π=2 microwave pulse projects the steady-state
polarization of a given spin i on the y axis,respect to both
dephasing time ρπ=2 ¼ eiðπ=2ÞŜ

x
i ρstate−iðπ=2ÞŜ

x
i . For short times

TABLE I. Control parameters chosen for the system at two
temperatures, close to experimental values [5,14,52].

β−1 (K) Tð0Þ (μs) T� (μs) T1 (μs) ω1 (2π MHz) ωMW (2π GHz)

1.2 1.6 80 160 0.628 93.8988
12 0.16 0.16 1.6 0.628 93.8988

FIG. 2. EPR spectra: dots represent numerical profiles forHilbert
(red) andnonsecular (black) evolutions.Dashed lines are calculated
through a spin-temperature ansatz. Top: β−1 ¼ 1.2 K. The bath is
slow, nonsecular and Hilbert dynamics provide analogous spin-
temperature curves. Bottom: β−1 ¼ 12 K. Bath timescales are
short, the nonsecular dynamics gets localized and displays a hole
burning. Here the Hilbert approximation fails, predicting a spin-
temperature behavior. Averages are done over 1000 realizations.
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after the pulse, the evolution is unitary and the polarization in
the ðx; yÞ plane is encoded in

giðτÞ ¼ −2iTr½Ŝþi ðτÞρπ=2�; ð11Þ

where Ŝþi ðτÞ ¼ eiĤSτŜþi e−iĤSτ. The EPR spectrum is defined
by Fourier transform: fðωÞ¼1=N

P
iRe½

R
∞
0 dτ=πgiðτÞe−iωτ�

[35], Sec. II.
At low temperature, we observe a spin-temperature curve

for both dynamics in the EPR spectra (Fig. 2). Here the bath
timescales T�, T1 are long with respect to both dephasing
time ω−1

nm ≈minð1=U; 1=ΔωeÞ and decoherence time
Tnm ≈ Tð0Þ. Consequently, the density matrix gets projected
in the eigenstate basis, as in the Hilbert approximation. At
higher temperature, the EPR spectrum is spin-temperature-
like for Hilbert dynamics, whereas it has a hole-burning
shape in the nonsecular evolution. The spin-temperature
behavior observed in the Hilbert approximation is expected
[5,6,27]: due to ETH, the jump operators projected on
eigenstates generate energyandpolarization changeswithout
any other information such as the spatial location of the spins.
Conversely, in the nonsecular equation the jump operators
are well localized in space and compete with dephasing,
which is unable to project the systemon the eigenstates (asT�
becomes comparable to dephasing and decoherence times).
The EPR spectrum develops a hole burning similar to the one
already observed when ĤS has MBL eigenstates [5,6] and
[35], Fig. S3, although ĤS eigenstates are ergodic for our
parameters. This breakdown is confirmed by comparing the
EPR profiles with the ones (dashed lines in Fig. 2) obtained
through a spin-temperature ansatz for the steady-state density

matrix ρansnn ðβs; hÞ ∝ e−βsðεn−hs
z
nÞ. szn are eigenvalues of the

conserved Ŝz. The spin temperature β−1s (respectively mag-
netic field h) is conjugated to the energy (respectively
polarization) and determined by a fit [6] and [35], Sec. III B
Spectral properties.—The localization phenomenon

exhibited by the experimentally relevant EPR spectra is
revealed through other observables, e.g., polarization pro-
files [35], Sec. III. In Fig. 3, we compare the entanglement
entropy of the ρstat eigenstates in the Hilbert and nonsecular
cases. The latter case is much less entangled and similar to
MBL eigenstates [35], Sec. III D, where Fig. S7 shows a
fully localized case. The present scenario is akin to the
measurement-induced entanglement transition in schematic
models such as quantum circuits [55–63], free fermionic
chains [64] and interacting bosonic chains [65–67].
Discussion and conclusion.—In open systems the exter-

nal bath permits thermalization even for strong disorder,
when eigenstates are localized. This is manifested by
phonon-induced hopping transport [68]: the bath supplies
or absorbs the energy needed to hop between localized
states. Here, we have shown how coupling to uncorrelated
thermal vibrations can instead induce localization in
quantum many-body systems with ergodic eigenstates,
revealed in presence of a drive. Whether this is a sharp
transition or a smooth crossover in the thermodynamic limit
remains an intriguing open question. Going beyond the
conventional secular approximation [25] is required to
capture this phenomenon. The mechanism underlying this
many-body Zeno effect is distinct from the Zeno effect in
quantum gases with localized particle losses [69–72] or
dephasing [73], where the combined impact of local single-
particle losses and interactions renormalizes single-particle
quantities. It also differs from localization by subohmic
baths at zero temperature [74–77], a polaronic effect wiped
out by interactions or temperature [78]. In the DNP context,
our work, based on heuristic values of the microscopic
timescales, provides an explanation for the thermal-mixing
breakdown upon increasing temperature, arising from
enhanced dynamics of the vibrational modes. The present
analysis calls for a thorough experimental test of temper-
ature influence on the different hyperpolarization regimes.
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Cesàro, and P. Carretta, Phys. Chem. Chem. Phys. 18,
16912 (2016).

[45] L. F. Chibotaru, A. Ceulemans, and H. Bolvin, Phys. Rev.
Lett. 101, 033003 (2008).

[46] N.W. Ashcroft and N. D. Mermin, Solid State Physics
(Holt, Rinehart and Winston, 1976).

[47] L. D. Landau and E. M. Lifshitz, Theory of Elasticity
(Elsevier, New York, 1986).

[48] R. Alicki, Phys. Rev. A 40, 4077 (1989).
[49] R. Alicki, D. Gelbwaser-Klimovsky, and G. Kurizki, arXiv:

1205.4552.
[50] J. S. Lee and J. Yeo, arXiv:2011.00735.
[51] F. Nathan and M. S. Rudner, arXiv:2011.04574.
[52] Y. Hovav, A. Feintuch, and S. Vega, Phys. Chem. Chem.

Phys. 15, 188 (2013).
[53] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,

SIAM Rev. 59, 65 (2017).
[54] Y. Saad, Iterative Methods for Sparse Linear Systems

(Society for Industrial and Applied Mathematics, University
City, PA, 2003).

[55] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 98,
205136 (2018).

[56] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith,
Phys. Rev. B 99, 224307 (2019).

[57] B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9,
031009 (2019).

[58] M. Szyniszewski, A. Romito, and H. Schomerus, Phys. Rev.
B 100, 064204 (2019).

[59] X. Turkeshi, R. Fazio, and M. Dalmonte, Phys. Rev. B 102,
014315 (2020).

[60] C.-M. Jian, Y.-Z. You, R. Vasseur, and A.W.W. Ludwig,
Phys. Rev. B 101, 104302 (2020).

PHYSICAL REVIEW LETTERS 126, 120603 (2021)

120603-5

https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevLett.115.080401
https://doi.org/10.1103/PhysRevLett.115.080401
https://doi.org/10.1103/PhysRevB.94.014203
https://doi.org/10.1103/PhysRevB.94.014203
https://doi.org/10.1103/PhysRevLett.121.267603
https://doi.org/10.1103/PhysRevLett.121.267603
https://doi.org/10.1103/PhysRevLett.125.116601
https://doi.org/10.1103/PhysRevLett.125.116601
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1038/ncomms15767
https://doi.org/10.1021/acs.jpclett.7b02233
https://doi.org/10.1021/acs.jpclett.7b02233
https://doi.org/10.1016/0009-2614(94)00548-6
https://doi.org/10.1016/0009-2614(94)00548-6
https://doi.org/10.1007/s00723-008-0133-5
https://doi.org/10.1007/s00723-008-0133-5
https://doi.org/10.1039/C4CP03825H
https://doi.org/10.1103/PhysRevLett.78.2803
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1103/PhysRevB.92.014203
https://doi.org/10.1103/PhysRevB.98.224202
https://doi.org/10.1103/PhysRevB.102.115109
https://doi.org/10.1103/PhysRevB.102.115109
https://doi.org/10.1103/PhysRevB.97.035432
https://doi.org/10.1103/PhysRevB.97.035432
https://doi.org/10.1103/PhysRevB.101.125131
https://doi.org/10.1088/0034-4885/41/3/002
https://doi.org/10.1088/0034-4885/41/3/002
https://doi.org/10.1002/cmr.1820040202
https://doi.org/10.1002/cmr.1820040202
https://doi.org/10.1103/PhysRev.70.460
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.120603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.120603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.120603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.120603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.120603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.120603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.120603
https://doi.org/10.1002/mrc.4724
https://doi.org/10.1002/mrc.4724
https://doi.org/10.1039/C6CP05047F
https://doi.org/10.1039/C3CP52534A
https://doi.org/10.1073/pnas.1709015114
https://doi.org/10.1073/pnas.1709015114
https://doi.org/10.1038/s41467-018-07978-1
https://doi.org/10.1039/C4CP02636E
https://doi.org/10.1039/C4CP02636E
https://doi.org/10.1039/C6CP00914J
https://doi.org/10.1039/C6CP00914J
https://doi.org/10.1103/PhysRevLett.101.033003
https://doi.org/10.1103/PhysRevLett.101.033003
https://doi.org/10.1103/PhysRevA.40.4077
https://arXiv.org/abs/1205.4552
https://arXiv.org/abs/1205.4552
https://arXiv.org/abs/2011.00735
https://arXiv.org/abs/2011.04574
https://doi.org/10.1039/C2CP42897K
https://doi.org/10.1039/C2CP42897K
https://doi.org/10.1137/141000671
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.100.064204
https://doi.org/10.1103/PhysRevB.100.064204
https://doi.org/10.1103/PhysRevB.102.014315
https://doi.org/10.1103/PhysRevB.102.014315
https://doi.org/10.1103/PhysRevB.101.104302


[61] A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan,
D. A. Huse, and J. H. Pixley, Phys. Rev. B 101, 060301(R)
(2020).

[62] Y. Bao, S. Choi, and E. Altman, Phys. Rev. B 101, 104301
(2020).

[63] L. Zhang, J. A. Reyes, S. Kourtis, C. Chamon, E. R.
Mucciolo, and A. E. Ruckenstein, Phys. Rev. B 101,
235104 (2020).

[64] X. Cao, A. Tilloy, and A. D. Luca, SciPost Phys. 7, 24
(2019).

[65] Q. Tang and W. Zhu, Phys. Rev. Research 2, 013022 (2020).
[66] S. Goto and I. Danshita, Phys. Rev. A 102, 033316 (2020).
[67] Y. Fuji and Y. Ashida, Phys. Rev. B 102, 054302

(2020).
[68] Hopping Transport in Solids, edited by M. Pollak and B.

Shklovskii, Modern Problems in Condensed Matter Scien-
ces, Vol. 28 (Elsevier, New York, 1991).

[69] V. S. Shchesnovich and V. V. Konotop, Phys. Rev. A 81,
053611 (2010).

[70] P. Barmettler and C. Kollath, Phys. Rev. A 84, 041606(R)
(2011).

[71] D. A. Zezyulin, V. V. Konotop, G. Barontini, and H. Ott,
Phys. Rev. Lett. 109, 020405 (2012).

[72] H. Fröml, A. Chiocchetta, C. Kollath, and S. Diehl, Phys.
Rev. Lett. 122, 040402 (2019).

[73] P. E. Dolgirev, J. Marino, D. Sels, and E. Demler, Phys. Rev.
B 102, 100301(R) (2020).

[74] A. J. Bray andM. A.Moore, Phys. Rev. Lett. 49, 1545 (1982).
[75] S. Chakravarty, Phys. Rev. Lett. 49, 681 (1982).
[76] A. Schmid, Phys. Rev. Lett. 51, 1506 (1983).
[77] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,

A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[78] L. F. Cugliandolo, D. R. Grempel, G. Lozano, H. Lozza, and

C. A. da Silva Santos, Phys. Rev. B 66, 014444 (2002).

PHYSICAL REVIEW LETTERS 126, 120603 (2021)

120603-6

https://doi.org/10.1103/PhysRevB.101.060301
https://doi.org/10.1103/PhysRevB.101.060301
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevB.101.235104
https://doi.org/10.1103/PhysRevB.101.235104
https://doi.org/10.21468/SciPostPhys.7.2.024
https://doi.org/10.21468/SciPostPhys.7.2.024
https://doi.org/10.1103/PhysRevResearch.2.013022
https://doi.org/10.1103/PhysRevA.102.033316
https://doi.org/10.1103/PhysRevB.102.054302
https://doi.org/10.1103/PhysRevB.102.054302
https://doi.org/10.1103/PhysRevA.81.053611
https://doi.org/10.1103/PhysRevA.81.053611
https://doi.org/10.1103/PhysRevA.84.041606
https://doi.org/10.1103/PhysRevA.84.041606
https://doi.org/10.1103/PhysRevLett.109.020405
https://doi.org/10.1103/PhysRevLett.122.040402
https://doi.org/10.1103/PhysRevLett.122.040402
https://doi.org/10.1103/PhysRevB.102.100301
https://doi.org/10.1103/PhysRevB.102.100301
https://doi.org/10.1103/PhysRevLett.49.1545
https://doi.org/10.1103/PhysRevLett.49.681
https://doi.org/10.1103/PhysRevLett.51.1506
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevB.66.014444

