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We verify that the eigenstate thermalization hypothesis (ETH) holds universally for locally interacting
quantum many-body systems. Introducing random matrix ensembles with interactions, we numerically
obtain a distribution of maximum fluctuations of eigenstate expectation values for different realizations of
interactions. This distribution, which cannot be obtained from the conventional random matrix theory
involving nonlocal correlations, demonstrates that an overwhelming majority of pairs of local Hamiltonians
and observables satisfy the ETH with exponentially small fluctuations. The ergodicity of our random
matrix ensembles breaks down because of locality.
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Introduction.—Deriving statistical mechanics from uni-
tary dynamics of isolated quantum systems has been a holy
grail since von Neumann [1]. The last two decades have
witnessed a resurgence of interest in this problem [2–6],
partly motivated by experiments in ultracold atoms [7–13]
and ions [14,15].
The eigenstate thermalization hypothesis (ETH) is

widely accepted as the main scenario for thermalization
in isolated quantum systems [16–18]. The ETH states that
every energy eigenstate is thermal and ensures that any
initial state relaxes to thermal equilibrium. Despite con-
siderable efforts [19–44], the rigorous proof of this hypoth-
esis has remained elusive.
A popular approach to understanding the universal

validity of the ETH is to invoke the typicality argu-
ment [1], which gives a mathematically rigorous
bound on the probability weight of the ETH-breaking
Hamiltonians, thereby demonstrating that an over-
whelming majority of Hamiltonians satisfy the ETH
[1,25–27,45]. It is tempting to argue that most realistic
Hamiltonians satisfy the ETH because most Hamiltonians
do. However, almost all Hamiltonians considered in
Ref. [45] involve nonlocal and many-body operators. In
fact, the typicality argument has recently been demon-
strated to be inapplicable to a set of local Hamiltonians
and local observables [46].
Another approach is to numerically test the ETH for

physically realistic models involving local interactions
between spins [21,22,30,31,33,34,36,37,41,42], fermions
[24,42,43,47], and bosons [20,24,28,29,38,47]. This
approach cannot clarify how generally the ETH applies
to physical systems. Indeed, recent studies have revealed
exceptional systems for which the ETH breaks down:
examples include systems with an extensive number of

local conserved quantities [7,48–56], many-body localiza-
tion (MBL) [9,13,15,57–63], and quantum many-body
scars [64–73].
In this Letter, we present the first evidence that the

ETH universally holds true for locally interacting quan-
tum many-body systems. We introduce random matrix
ensembles constructed from local interactions and inves-
tigate their generic properties. In particular, we evaluate
the weight of the ETH-breaking Hamiltonians by numeri-
cally obtaining distributions of fluctuations of eigenstate
expectation values [74]. We find that the ETH with
exponentially small fluctuations is satisfied for an over-
whelming majority of ensembles with local interactions.
The obtained distribution shows that the fraction of
exceptions is less suppressed for local ensembles than
the conventional random matrix ensemble, which
involves nonlocal interactions and many-body inter-
actions. Here, by many body, we mean that the number
of particles involved is comparable with the total
number of particles. If we allow less local interactions,
the distribution rapidly approaches that predicted by the
conventional random matrix theory. We find that the
ergodicity of our random matrix ensembles breaks down
because of locality.
Local random matrix ensembles.—We consider N spins

on a one-dimensional lattice with the periodic boundary
condition and ensembles of Hamiltonians with local
interactions. We denote the local Hilbert space on each
site as Hloc and the total Hilbert space as HN ≔ H⊗N

loc .
We choose an arbitrary orthonormal basis Bloc ¼ fjσig
of Hloc and define the corresponding basis of HN
as BN ¼ fjσ1;…; σNij ∀ j; jσji ∈ Blocg. The translation
operator T̂N acting on HN satisfies T̂N jσ1σ2;…; σNi ≔
jσ2;…; σNσ1i for all jσ1σ2;…; σNi ∈ BN .
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Let LðHÞ be the space of all Hermitian operators acting
on a Hilbert spaceH. For a given Hamiltonian Ĥ, an energy
shell HE;δE centered at energy E with width 2δE is defined
as HE;δE ≔ spanfjEαijjEα − Ej ≤ δEg, where jEαi is an
eigenstate of the Hamiltonian Ĥ with eigenenergy Eα. We
randomly choose a local Hamiltonian ĥðlÞ from the
space LðH⊗l

locÞ with respect to the Gaussian unitary ensem-
ble. We call an element of LðH⊗l

locÞ an l-local operator
and an integer l ∈ N the locality of an interaction. We
define the range of the spectrum of an operator Ô as
ηO ≔ maxα aα −minα aα, where aα’s are eigenvalues of Ô.
We consider Hamiltonians of the form

ĤN ≔
XN−1

j¼0

T̂j
Nĥ

ðlÞ
j T̂−j

N ð1Þ

and introduce the following three types of ensembles [76]:

Case 1: hðlÞj ¼ hðlÞ for all j. Case 2: hðlÞj is normalized so
that η

hðlÞj
¼ η for all j. Case 3: No restrictions.

The number of parameters needed to characterize a
single Hamiltonian increases from case 1 to case 3 [79].
We randomly choose an l-local observable ôðlÞ ∈ LðH⊗l

locÞ
from the Gaussian unitary ensemble and construct an

extensive observable ÔN ∈ LðHNÞ as in Eq. (1) with ôðlÞj ¼
ôðlÞ for all j.
Measure of the strong ETH.—We focus on the strong

ETH, which asserts that all eigenstates should be
thermal. While several definitions for a measure of the
ETH have been proposed [19–23,45,46], we consider a
measure applicable to generic local systems. We require
that the measure be (i) invariant under linear transforma-
tions: Ĥ ↦ aĤ þ b; Ô ↦ a0Ôþ b0, (ii) dimensionless,
(iii) thermodynamically intensive, and (iv) applicable to
eigenstate expectation values after subtraction of weak
energy dependences. Here, (i) is needed because the
measure of the strong ETH should be invariant against a
change of physical units and translation, (ii) is needed
because we compare quantities with different physical
dimensions, and (iii) is needed because we admit sub-
extensive fluctuations from a macroscopic point of view.
Finally, (iv) is important because the energy dependence
generically appears in the presence of local interactions.
Such a dependence invalidates the typicality argument
based on a unitary Haar measure unless the energy width
is exponentially small [46]. Since this energy dependence
of a macroscopic observable can be observed, it should not
be considered to be a part of fluctuations of eigenstate
expectation values. To be concrete, consider a measure of
the strong ETH as Δ̃∞≔maxα∶jEαi∈HE;δE

jOαα− hÔimc
δEðEÞj=

ηO, where h� � �imc
δEðEÞ is the microcanonical average within

HE;δE. This is essentially the same quantity as that used in
Ref. [45]. The scaling behavior of this measure depends on

the scaling of the energy width δE, which is inappropriate
as the measure of the strong ETH. Such an energy
dependence is removed if we consider an eigenstate-
dependent microcanonical energy shell and introduce the
following measure:

Δ∞ ≔
maxαjOαα − hÔimc

δEðEαÞj
ηO

; ð2Þ

where the maximum is taken from the middle 10% of the
energy spectrum to avoid finite-size effects at both edges
of the spectrum where the density of states is small.
The strong ETH implies that Δ∞ → 0 in the thermody-
namic limit.
We employ the exact diagonalization method to inves-

tigate the universality of the ETH. For case 1, we restrict
ourselves to the zero-momentum sector. An analytical
method based on a uniform-random-vector method over
the Haar measure [45] can no longer be applied to our
Hamiltonians because of their local structures [46].
Strong ETH for almost all local random matrices.—We

numerically obtain the distributions of Δ∞ for several
system sizes N and locality l. We first demonstrate that
the ETH holds true for almost all local random matrices on
the basis of Markov’s inequality,

ProbðlÞN ½Δ∞ ≥ ϵ� ≤ EðlÞ
N ½Δ∞�
ϵ

: ð3Þ

Here, Prob and E denote the probability and the expectation
value with respect to random realizations of Ĥ and Ô. The

vanishing of EðlÞ
N ½Δ∞� in the thermodynamic limit is a

sufficient condition for the strong ETH with an arbitrary
constant ϵ > 0 for almost all sets of local Hamiltonians and
observables.
We compare our numerical results with the prediction of

conventional random matrix theory, whose asymptotic N
dependence is obtained as [see discussions after Eq. (6)]

EN ½Δ∞� ¼ m0Ne−N=Nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Nm

2

logN
N

−
N0

N

r
ð4Þ

for case 1 and

EN ½Δ∞� ¼ m0N1=2e−N=Nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

N0

N

r
ð5Þ

for cases 2 and 3, where m0, N0, and Nm are constants. As
shown in Fig. 1, these formulas fit well to our numerical
data for all the ensembles irrespective of locality l. While
Eqs. (4) and (5) are expected to apply to a less local case
(i.e., l is large) with not too small system sizes, where

ProbðlÞN ½Δ∞ ≥ ϵ� itself is close to that for the conventional
random matrix theory, they fit well to the cases with strong
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locality (l ¼ 2), where ProbðlÞN ½Δ∞ ≥ ϵ� is distinct from that
of conventional random matrix theory as discussed later.
The exponential decay of EðlÞ

N ½Δ∞� allows one to make
both ϵ and the right-hand side of Eq. (3) exponentially
small by taking ϵN ∝ expð−N=N1Þ with N1 > Nm. This
means that the strong ETH with exponentially small
fluctuations [∼ expð−N=N1Þ] holds for an overwhelming
majority of the ensemble, where the fraction of exceptional
cases is exponentially small [83]. We also note that Nm is
close to 2= log 2, since the standard deviation ofOαα decays
as 1=

ffiffiffiffiffiffi
dsh

p
[84] and dsh ∝ dimHN ¼ 2N=N or 2N, where

dsh ≔ dimHE;δE irrespective of l unless δE decreases
exponentially with N (see Supplemental Material [80]).
Notably, the ETH universally holds even for cases 2 and

3. Our results show that MBL rarely occurs for these types
of spatial disorder. This is similar to the many-body chaos
found in random unitary circuits [85,86]. Our results further
suggest that the randomness does not prevent thermal-
ization even with energy conservation owing to continuous-
time evolution. We also examine the argument that
localization may occur when the magnitude of the sum
of off-diagonal elements of a Hamiltonian exceeds that of a
diagonal one. Assuming independent Gaussian elements,
we estimate the probability that a sample may show MBL
to be ∼ exp½−OðNdllocÞ� [80]. However, since off-diagonal
elements of our Hamiltonians are highly correlated because
of the spatial locality, the relevance of the above estimate
remains unclear [87].
Distribution of the maximum fluctuation.—Since

Markov’s inequality gives only a loose upper bound, we

directly obtain distributions of Δ∞ for several values of N.
Below, we focus on case 1 (see Supplemental Material for
cases 2 and 3 [80]). The results are shown in Fig. 2, where
the distribution with l ¼ 2 [Fig. 2(a)] is distinct from the
prediction of the conventional random matrix theory
involving nonlocal operators. We find that its tail decays
single exponentially or slightly slower than a single
exponential expð−ϵ=ϵ1Þ, unlike the conventional random
matrix theory, which predicts a much faster decay of the
tail as exp½−Oðϵ2Þ�. This suggests that locality favors
Hamiltonians with relatively large Δ∞ because of the
closeness to those Hamiltonians that are integrable or host
scars. The distribution of Δ∞ for case 1 with l ¼ 3 shows a
crossover from a rapid decay in the region ProbN ½Δ∞ ≥
ϵ�≳ Pc ∼ 1.0 × 10−3 followed by a slower decay in the
region ProbN ½Δ∞ ≥ ϵ�≲ Pc ∼ 1.0 × 10−3 [Fig. 2(b)]. This
behavior is similar to the case with l ¼ 2, but Pc is much
smaller (Pc ∼ 1.0 × 10−2 for l ¼ 2). Our finite-size scaling
analysis suggests that these deviations from the random
matrix theory prediction persist in the thermody-
namic limit.
As the locality l increases, the distributions of Δ∞

rapidly approach the prediction of the conventional random
matrix theory (RMT), where the fluctuations of eigenstates
distribute according to the Gaussian distribution with zero

FIG. 1. Mean value of the measure in Eq. (2) for various
ensembles. The solid curve is the fitting function in Eq. (4) for
case 1 or Eq. (5) for cases 2 and 3 (see Supplemental Material
[80]). The values of the fitting parameters ðNm;N0; m0Þ are
(3.20,2.90,0.21) for case 1 with l ¼ 2, (2.71,5.26,0.33) for case 1
with l ¼ 6, (2.29,6.13,0.94) for case 2 with l ¼ 2, and
(2.20,6.37,1.25) for case 3 with l ¼ 2. The values Nm for cases
2 and 3 are smaller than the expected value 2= log 2 owing to a
finite-size effect. The number of samples lies between 7980 and
947 770 for all data points.

(a) (b)

(c) (d)

FIG. 2. (a) ProbðlÞN ½Δ∞ ≥ ϵ� with l ¼ 2 as a function of ϵ for
various system sizes (colored dots). The distributions for l ¼ 6
(gray dots) with N ¼ 13 ∼ 16 are shown for comparison. The
gray dashed lines show exponential functions of the form
C expð−ϵ=ϵ0Þ. The dashed line in the inset (log-log plot) shows
a polynomial function of the form ðϵ1=ϵÞa. The tail fittings are
performed in the region ϵ > 3EN ½Δ∞�. The number of samples is

947 770. (b),(c) ProbðlÞN ½Δ∞ ≥ ϵ� with l ¼ 3 and 4, respectively.

(d) Distribution of Δ∞ normalized with EðlÞ
N ½Δ∞� for case 1 with

l ¼ 2, 3, 4, 6 and N ¼ 16. The gray line is a maximum value
distribution predicted from the conventional random matrix
theory, which is rescaled so that its mean becomes unity.
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mean and the identical variance s2N for each sample. Indeed,
as shown in Figs. 2(c) and 2(d), even for l as small as 4,

ProbðlÞN ½Δ∞ ≥ ϵ� is well fitted by the cumulative function of
the maximum absolute value of dsh-independent and
identically distributed Gaussian variables,

ProbðRMTÞ
N ½Δ∞ ≥ ϵ� ¼ 1 − CDFðϵÞ

¼ 1 −
�
erf

�
ϵ=

ffiffiffiffiffiffiffiffi
2s2N

q ��
dsh
; ð6Þ

where erfðxÞ is the error function and dsh ≔ dimHE;δE.
The extreme value theory [91] allows us to obtain the

asymptotic form of the cumulative distribution function
(CDF): if we set bN ∼ sN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logdsh

p
and aN ¼ s2N=bN ,

the right-hand side in Eq. (6) converges to the Gumbel

distribution ProbðRMTÞ
N ½Δ∞ ≥ ϵ� ∼ 1 − exp½−e−ðπ=

ffiffi
6

p Þy−γ�
for large dsh, where y ≔ ðϵ − bNÞ=aN is a rescaled random
variable, and γ ≃ 0.577 is the Euler-Mascheroni constant
[80]. This fact implies that EN ½Δ∞� ≃ bN ∼ sN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log dsh

p
and SN ½Δ∞� ≃ aN ∼ sN=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log dsh

p
, where SN denotes the

standard deviation. This distribution is applicable in the
range ϵ ¼ EN ½Δ∞� þ cSN ½Δ∞�, where c is a constant of
Oð1Þ with respect to N.
These formulas lead to the asymptotic N dependence of

EN ½Δ∞� in the conventional random matrix regime. Since
dsh ¼ e−2N0=Nm dimHN and sN ∝ ðdshÞ−1=2 for sufficiently
large N, we obtain the asymptotic formulas in Eqs. (4) and
(5) by inserting dimHN ¼ dNloc=N for case 1 and dimHN ¼
dNloc for cases 2 and 3 in EN ½Δ∞� ∼ sN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logdsh

p
, and by

setting dNloc ¼ e2N=Nm .
Ergodicity breaking for local random matrices.—Let

us now discuss the structure of the expectation values
over eigenstates for random realizations of sets of local
Hamiltonians and observables.
Srednicki conjectured [84] that the fluctuations of

expectation values can be expressed as δðONÞαα ∼
e−ðSNðEÞ=2ÞfOðEÞR̃αα. Here, SNðEÞ is the thermodynamic
entropy of the system that depends only on the Hamiltonian
ĤN , fOðEÞ is a smooth function of energy E that depends
on ĤN and ÔN , and R̃αα distributes according to the normal
Gaussian distribution.
We test the above conjecture for our three ensembles

for l ¼ 2 as a local case and l ¼ 8 as a nonlocal case. We
find that a majority of systems satisfy Srednicki’s con-
jecture irrespective of the locality; that is, the standard
deviation of δðONÞαα inside an energy shell HE;δE scales
as ∝ ð ffiffiffiffiffiffi

dsh
p Þ−a ∼ e−aðSNðEÞ=2Þ with a ≃ 1 (Fig. 3), and R̃αα

distributes according to the normal Gaussian [80]. Since the
probability density peaks more sharply around unity as we
increase the system size, we expect that Srednicki’s
conjecture holds typically in the thermodynamic limit.
However, the rate of decrease is relatively slow, especially
at small a for the distribution with l ¼ 2 [Fig. 3(a)].

We also find that sample-to-sample fluctuations
become large for local random matrices. The ergodicity
of a random matrix ensemble [92], which means that the
spectral average equals the ensemble average, does not
apply to situations with locality. We observe its signature
in Fig. 3(a), where samples with small a exist for l ¼ 2,
while the distribution concentrates around a ¼ 1 for a less
local case with l ¼ 8. Atypical samples with small a
have multifractal eigenstates even in the middle of the
spectrum [80].
Figure 4 shows the mean of the L2 norm δ defined by

δ ≔
�

1

Nbin

XNbin

bin¼1

ðhXðEαÞibin − EN ½hXðEαÞibin�Þ2
�1=2

; ð7Þ

where h� � �ibin denotes the average inside each bin and
EN ½� � �� denotes the ensemble average. Figures 4(a) and 4
(b) show the N dependence of XðEÞ ¼ fOðEÞ and the
normalized density of states XðEÞ ¼ ρðEÞ (i.e., the density
of states divided by dimHN), respectively, for Nbin ¼ 100.
The mean of the L2 norm for fOðEÞ or ρðEÞ decreases with
N for case 1 with l ¼ 8, which is a manifestation of
ergodicity in the conventional random matrix ensemble
[92]. It converges to a finite value [for ρðEÞ] or even
increasing [for fOðEÞ] for local ensembles with l ¼ 2 for

(a) (b)

FIG. 3. Distribution of the value of a in the fitting of the

standard deviation SðE;δEÞ
γ ½δðONÞγγ� ∝ ð ffiffiffiffiffiffi

dsh
p Þ−a in the shell

HE;δE for the case-1 ensemble with (a) l ¼ 2 and (b) l ¼ 8,
where E is chosen to be the center of the spectrum and δE is 5%
of the spectral range. The fittings are performed in the region
8 ≤ N ≤ Nm. The number of samples is 10 000 for each panel.

(a) (b)

FIG. 4. Mean EN ½δ� of the L2 norm from the ensemble averages
for (a) fOðEÞ in Srednicki’s conjecture and (b) the normalized
density of states ρðEÞ. The number of samples is 48 800 for case 1
with l ¼ 2, 43 293 for case 1 with l ¼ 8, and 10 000 for cases 2
and 3.
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case 1, which indicates the breakdown of ergodicity.
The breakdown of ergodicity for local ensembles can
also be seen in the density of states ρðEÞ for cases 2
and 3. The mean deviation for fOðEÞ seems to level off
once around N ¼ 11 but then continues to decrease for
larger N for these cases. We thus cannot conclusively judge
whether ergodicity breaks down with currently achievable
system sizes for fO in cases 2 and 3.
Conclusion.—We find that the locality of interactions on

an ensemble of Hamiltonians makes distributions of local
observables significantly different from those of the con-
ventional random matrix theory. However, the strong ETH
with exponentially small fluctuations holds true for an
overwhelming majority of the ensemble, where the fraction
of exceptions is exponentially small. We also find that
ergodicity of random matrix ensembles breaks down
because of locality. We expect that the universality of
the ETH still holds true for higher dimensions, since
integrability such as Bethe-ansatz solvability is unique to
1D and MBL seems unstable in higher dimensions [93].
While the universality of the ETH is confirmed in all

three ensembles studied here, it is of fundamental interest to
investigate whether imposing additional conserved quan-
tities can prevent the universality. It is of interest to examine
whether the ETH-MBL transition occurs if we implement
more structured randomness than the case-2 and case-3
ensembles, such as ensembles where the strengths of one-
and two-site disorder are different. Our ensembles can
provide a relaxation timescale of generic interacting
Hamiltonians with locality, which is not taken into account
in related works [94–96].
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