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The nature of level set percolation in the two-dimensional Gaussian free field has been an elusive
question. Using a loop-model mapping, we show that there is a nontrivial percolation transition and
characterize the critical point. In particular, the correlation length diverges exponentially, and the critical

clusters are “logarithmic fractals,” whose area scales with the linear size as A ∼ L2=
ffiffiffiffiffiffiffiffi
lnL

p
. The two-point

connectivity also decays as the log of the distance. We corroborate our theory by numerical simulations.
Possible conformal field theory interpretations are discussed.
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Introduction.—Imagine a random landscape being
flooded with water. As the water level rises, initially
disconnected lakes connect with one another and form
eventually an infinite ocean. Does that happen when the
flooded area reaches a critical density? If yes, what are the
critical properties of the transition? These are the basic
questions of the percolation theory of random fields—the
relief profile is given by a field ϕðxÞ and the flooded area
fx∶ϕðxÞ ≤ hg is known as the level set (or excursion set) of
height h [1]. Such questions arise naturally in topography
and planet science [2,3], but also in transport properties of
disordered systems [4–6] and have been extensively studied
(for recent reviews, see [7,8]).
The answer to these questions depends crucially on the

statistical properties of the field. If it is short-range
correlated, there is a second-order percolation transition
[9–11]: in the thermodynamic limit, infinite clusters (con-
nected components) of the level set never appear below
some critical threshold and always appear above it. The
critical point is in the universality class of standard
uncorrelated percolation. For long-range correlated fields
characterized by a single Hurst roughness exponent H,
hϕðxÞϕðyÞi ∼ jx − yj2H, the situation is richer. When
H < 0, a transition still exists. At criticality, the infinite
clusters are fractals, see Fig. 1(a). Their geometric proper-
ties depend on H and have been analytically and numeri-
cally characterized [12–15]. WhenH > 0, there is no sharp
transition [16], and the clusters are “compact” objects
instead of fractals, see Fig. 1(c).
A natural question is then what happens atH ¼ 0, where

ϕ is log correlated. This is arguably the most interesting
point, especially in two dimensions, as it corresponds to the
2D Gaussian free field (GFF). A simple model of elastic
interfaces [17], its importance in low-dimensional physics
[18], 2D critical phenomena [19], and random geometry
[20] cannot be overstated. Despite the enormous amount of

studies on the 2D GFF, the percolation of its level sets has
been little discussed (by contrast, a number of rigorous
results exist for the GFF inD ≥ 3 dimensions [21,22] or for
the GFF on a transient tree [23]). There are indeed a few
arguments for dismissing this problem as uninteresting. For
example, since the correlation length exponent ν diverges
as H approaches zero from below [12], there would be no
transition at H ¼ 0 [2] (see, however, [16]). Moreover,
even if there is a transition, it could be trivial from a
geometric point of view [24], since the fractal dimension of
the critical clusters approaches Df ¼ 2 in the same limit
[14,15,25]. However, these conclusions can be challenged
by looking at some large level set clusters of the 2D GFF,
shown in Fig. 1(b). They are apparently distinct from their
H > 0 as well as H < 0 counterparts. Numerical simu-
lations also indicate a sharp transition at a critical density
1=2 in the thermodynamic limit, see Fig. 2. Could the
above arguments have missed something subtle?
In this Letter, we revisit the problem of level set

percolation in the 2D GFF. By an analytical argument
based on the loop-model reconstruction of the 2D GFF, we

(a) (b) (c)

FIG. 1. Level set percolation in random fields with different
roughness exponents. (a) When H ¼ −1 < 0, there is a perco-
lation transition, with fractal clusters appearing at criticality.
(b) When H ¼ 0 (2D GFF), the critical clusters are logarithmic
fractals. (c) WhenH ¼ 1

2
> 0, there is no sharp transition, and the

clusters are not fractal.
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show that its level set percolation is a nontrivial critical
phenomenon, characterized by an exponentially diverging
correlation length. At criticality, we find that the area of the
large clusters with linear size L scales as

A ∼
L2ffiffiffiffiffiffiffiffi
lnL

p : ð1Þ

So, the clusters have the same fractal dimension 2 as
compact Euclidean forms, but differ from them by a log
correction. Such geometric objects have been named “log
fractals” [28–30]. A remarkable example of log fractals is
the set of points visited by a random walk on a 2D lattice,
which satisfies A ∼ L2= lnL [31,32]. Wewill also show that
the probability that two points x and y belong to the same
level cluster has a peculiar log decay,

P2ðx; yÞ ≈ C −
1

π

ln jx − yj
lnL

; ð2Þ

where C is an unknown constant and L is the system size.
GFF by loop model.—The 2D GFF can be defined by the

action

S½ϕ� ¼ g
4π

Z
½∇ϕðxÞ�2d2x ð3Þ

(the probability of ϕ is proportional to e−S½ϕ�), where g is
the coupling constant, which also determines the log
correlation of ϕ,

hϕðxÞϕðyÞi ¼ −
1

g
ln jx − yj: ð4Þ

Its short-distance divergences need to be regularized in
some way. Here, we shall do this by using the Oðn ¼ 2Þ

loop model on the honeycomb lattice [33], as reviewed
below. We expect the critical properties of the level set
percolation do not depend on the choice of regularization.
The OðnÞ loop models can be defined by a partition

function that sums over all configurations C of disjoint
loops on the lattice, see Fig. 3(a),

Z ¼
X
C

nNCKLC ; ð5Þ

where n and K are fugacities associated with the number
of loops NC and the their length LC, respectively. When
n ¼ 2, for any K ≥ Kc ¼ 1=

ffiffiffi
2

p
, the model is critical and

described by a conformal field theory (CFT) with central
charge c ¼ 1 (see, e.g., [34,35]). Given a loop configura-
tion, we can assign a random orientation to each loop and
define a height function ϕ on the lattice faces such that
the loops are its oriented contour lines, with a step �π
across each loop. Assuming the Dirichlet boundary con-
dition for ϕ in a simply connected domain, that is, using
ϕjboundary ¼ 0 as the starting point, the height configura-
tions are in one-to-one correspondence with oriented loop
configurations [36]. It is well known that the scaling limit
of the height function is a 2D GFF with a coupling constant
satisfying

n ¼ −2 cosðπgÞ⇒n¼2
g ¼ 1: ð6Þ

The above mapping is the first step to the Coulomb gas
approach, which has been applied for studying certain
random sets of the GFF, notably the loops and the regions
between them [37] (see [38] and references therein for
rigorous works). However, the Coulomb gas approach fails
to capture the level cluster, but we can still use the mapping
to study them.

FIG. 2. Percolation threshold of 2D GFF level sets on square
lattices of size L × L. The existence probability of a percolating
cluster PLðfÞ, where f ¼ ðlevel set areaÞ=L2 is the level set’s
mean density. Inset: finite-size scaling collapse according to the
correlation length prediction (16), identifying ξ ¼ L. The critical
value fc ¼ 1=2 regardless of lattice details. All numerics in this
Letter are done with real-valued 2D GFFs on periodic square
lattices, generated by the standard Fourier filter method [26,27].

(a) (b) (c)

FIG. 3. (a) A loop-model configuration on a honeycomb lattice
and the associated height field ϕ (heights are in unit of π). The
color of a loop (blue or green) determines the increment of ϕ
across it; ϕ is constant in regions between loops. (b) A point z
encircled by dz ¼ 4 loops and a path from the boundary to z
(without crossing other loops that are not drawn). The field along
the paths gives a random walk realization fZjg ¼ 0;−1, 0, 1.
(c) Two points x and y satisfying q ¼ 2, dx ¼ 3, dy ¼ 4,
connected to the boundary by a branching path. The random
walk realization fXjg ¼ 0;−1; 0;−1 and fYjg ¼ 0;−1, 0, 1, 0
share the first q steps.
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Application to percolation.—Now that we have a 2D
GFF ϕ regularized on a simply connected domain with
Dirichlet boundary condition, let us consider the level set
fϕ ≤ hg for h > 0. The “infinite cluster” is defined as the
set of points that are connected to boundary by a path in the
level set. Note that the “gasket,” i.e., the region not
encircled by any loop, is a subset of the infinite cluster.
Now, let z be inside a hexagon, the following probability

P∞ðz; hÞ ≔ Probðz ∈ the infinite clusterÞ ð7Þ

is the order parameter in percolation theory. It encodes, in
particular, the basic critical exponents.
A little thought shows that this has much to do with the

number dz of loops that encircle z. Indeed, consider a path
from the boundary to z that only crosses the dz loops
encircling z, see Fig. 3(b). z is in the infinite cluster if and
only if ϕ ≤ h along this path. By the loop-model con-
struction, the values of ϕ along the path, denoted fZjgdzj¼0,
form an unbiased 1D random walk with steps �π

Z0 ¼ 0; Zj − Zj−1 ¼ �π; j ¼ 1;…; dz: ð8Þ

A classical result states that this random walk never goes
above h with the following probability (see, e.g., [39]):

Probð∀ j ≤ dz; Zj ≤ hÞ ≈ erf

�
h

π
ffiffiffiffiffiffiffi
2dz

p
�
θðhÞ; ð9Þ

provided dz ≫ 1. Since Probð∀ j ≤ dz; Zj ≤ hÞ is the
probability (7) conditioned on the random number dz,
the order parameter can be obtained by averaging over dz.
In the scaling limit, this can be done by simply treating dz
as deterministic and replacing it by its mean value

P∞ðz; hÞ ≈ Probð∀ j ≤ hdzi; Zj ≤ hÞ: ð10Þ

To justify this, observe first that the mean value of dz is
related to the variance of ϕðzÞ

hdzi ¼
1

π2
hϕðzÞ2i ≈ 1

π2
lnL; ð11Þ

where L is the lattice size, for any z far from the boundary
(in lattice units). Meanwhile, the fluctuations of dz are of
order

ffiffiffiffiffiffiffiffi
lnL

p
[40,41], so can indeed be neglected compared

to hdzi [27] as L → ∞. Combining (9)–(11), we have

P∞ðz; hÞ ≈ erf

�
hffiffiffiffiffiffiffiffiffiffiffi
2 lnL

p
�
≈

hffiffiffiffiffiffiffiffiffiffiffi
π
2
lnL

p ; ð12Þ

where we linearized erfðxÞ around x ¼ 0. Therefore, (12) is
valid in the scaling limit L → ∞ with fixed h > 0 and z far
from the boundary.

With the result (12) at hand, we can derive most of the
claims in the Introduction. Equation (1) is immediately
obtained by summing (12) over the ∼L2 lattice points. The
nature of the log fractal is manifest in the fact that the
probability of a point belonging to it decays logarithmically
in L, as opposed to algebraically in a usual fractal. The
order parameter exponent β can be also obtained.
Introducing the mean density of the level set

f ¼ Prob½ϕðzÞ ≤ h� ¼
Z

h

−∞
e−x

2=ð2 lnLÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π lnL

p

≈
1

2
þ hffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π lnL
p ð13Þ

for h ∼Oð1Þ and L → ∞, β is defined by the nonanaly-
ticity of P∞,

P∞ðf > fcÞ ∼ ðf − fcÞβ: ð14Þ

Comparing (12)–(14), we have

β ¼ 1; ð15Þ

as well as fc ¼ 1=2; the latter is observed numerically, see
Fig. 2. Finally, comparing P∞ ∼ ðf − fcÞ1 and P∞ ∼
1=

ffiffiffiffiffiffiffiffi
lnL

p
(12), and assuming that close to the critical point,

the correlation length ξ ∼ L, we find that ξ diverges
exponentially near criticality such that

jf − fcj ∼
1ffiffiffiffiffiffiffi
ln ξ

p : ð16Þ

This is in nice agreement with numerical simulations
shown in Fig. 2 and explains why the transition sharpens
extremely slowly as the system size increases. We note that,
in the thermodynamic limit, any value h ¼ Oð1Þ is critical,
even if h ≤ 0 (the restriction h > 0 above has to do with the
specific setup of the Dirichlet boundary condition and the
definition of the infinite cluster).
It is useful to contextualize the above results as the limit

of level set percolation with H < 0. It was shown by an
extended Harris criterion [12] that, when H ∈ ð−3=4; 0Þ,
the correlation length exponent νðHÞ ¼ −1=H. The level
cluster’s fractal dimensionDfðHÞ is not known exactly, yet
numerics [14,15] suggest that DfðH → 0Þ ¼ 2. Our analy-
sis explains these limiting behaviors: νðH ¼ 0Þ ¼ ∞
because the correlation length diverges faster than any
power law, and Dfð0Þ ¼ 2 because we have a log fractal.
Moreover, assuming that β is continuous at H ¼ 0−, we
have by hyperscaling
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DfðHÞ ¼ 2 −
βðHÞ
νðHÞ ¼ 2þH þOðH2Þ; H < 0: ð17Þ

We also remark that the boundaries of the level cluster,
i.e., the loops, are described by the Schramm-Loewner
evolution SLEκ¼4 [42,43] and have a fractal dimension 3=2
[44]. This fractal dimension corresponds to a primary
operator in the CFT of the O(2) loop model. The same
CFT also describes the interior regions between loops,
which have a fractal dimension 15=8. However, the level
cluster does not seem to be described by any known CFT. It
is a very different object, depending on the “random
topology,” rather than the random geometry, of the loops.
Two-point connectivity.—To further illustrate this point,

let us consider another standard observable in percolation:
the two-point connectivity P2ðx; yÞ at criticality, the prob-
ability that x and y are in the same connected component of
the level set fϕ ≤ hg, for any fixed h ¼ Oð1Þ. This
observable has been shown recently to probe very subtle
universal properties of critical clusters [15,46]. Similar to
P∞ above, P2ðx; yÞ can be calculated by conditioning on
the loop configurations. More precisely, we condition on
dx, dy, and also q, the number of loops that encircle both
points, see Fig. 3(c). The random walks X0;…; Xdx and
Y0;…; Ydy that record the field value evolution from the
boundary to x and y have the same first q steps,

Xj ¼ Yj; j ¼ 0;…; q; ð18Þ

while the remaining dx − q and dy − q steps are indepen-
dent (we have a branching random walk). Then, it is not
hard to see that the two-point connectivity conditioned on
dx, dy, and q is the probability that the “forked” part of the
branching random walk never goes above h,

P2ðdx; dy; qÞ ¼ Probð∀ i; j ≥ q; Xi ≤ h; Yj ≤ hÞ: ð19Þ

The common part (< q) is not further constrained since we
do not require x, y to belong to the infinite cluster. Similar
to (9) above, we have

P2ðdx; dy; qÞ ≈
Z

∞

0

erf

�
u

ffiffiffi
q

p þ hffiffiffiffiffiffiffi
2sx

p
�
erf

�
u

ffiffiffi
q

p þ hffiffiffiffiffiffiffi
2sy

p
�
e−

u2
2 duffiffiffiffiffiffi
2π

p

ð20Þ
as long as sx ≔ dx − q; sy ≔ dy − q, and q are all much
larger than 1. In that limit, h ¼ Oð1Þ can be also neglected.
Like dx and dy, the mean value of q is fixed by the
covariance of the GFF,

hqi ¼ 1

π2
hϕðxÞϕðyÞi ≈ 1

π2
ln

L
jx − yj ; ð21Þ

and q also becomes deterministic when L=jx − yj ≫ 1 (see
Supplemental Material [27]). As a result, we find

P2ðx; yÞ ≈
Z

∞

0

erf

0
B@ u

ffiffiffiffiffiffiffiffiffiffiffiffi
ln L

jx−yj
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln jx − yjp

1
CA

2

e−
u2
2 duffiffiffiffiffiffi
2π

p ; ð22Þ

valid in the scaling limit 1 ≪ jx − yj ≪ L, with x, y far
from the boundary. In the regime where jx − yj ≫ ffiffiffiffi

L
p

, the
error functions can be linearized, and (22) simplifies to (2)
in the Introduction, with the offset predicted as C ¼ 1=π.
We now test (2) numerically, see Fig. 4. The results

confirm nicely the ln jx − yj=ðπ lnLÞ dependence on the
distance predicted in (2), including the exact prefactor and
throughout the scaling regime. On the other hand, the offset
C does not agree with the analytical prediction. The reason
of this is twofold. First, we recall that Eq. (22) is derived on
a simply connected domain with Dirichlet boundary con-
dition, while the numerics is performed on a torus (see
caption of Fig. 2). Moreover, we are a priori far from the
thermodynamic limit. Indeed, our analytical argument
relied on a large average number of encircling loops.
Yet, according to (11), there are on average 0.8 loops
encircling a point in a lattice of L ¼ 2048 (even on an
Avogadro-scale lattice with L ¼ 1010, there would be 2.3
loops on average). The offset is affected by the different
infrared regularization and the abundance of realizations
with few loops. In contrast, the ln jx − yj=ðπ lnLÞ depend-
ence appears to be remarkably robust. Therefore, we
propose (2), with an unknown offset C, as a general
prediction of two-point connectivity.
The log in (2) can be explained by a rather simple

argument. Indeed, forH < 0, the level clusters are standard

(b)

(a)

FIG. 4. Testing the two-point connectivity prediction (2) with
h ¼ 0 level sets of the 2D GFF on periodic square lattices of size
L × L. The averaged two-point connectivity P2ðx; yÞ as a
function of ln jx − yj= lnL. The dots are numerical measure with
L ¼ 32; 64;…; 2048; see inset (a) for color code. The solid line
represents the prediction (2) (with the exact slope 1=π and
arbitrarily adjusted offset C). Inset (a): the slope as a function
of system size, obtained by a global linear fit of each curve. A
convergence to the prediction 1=π as L → ∞ is observed. Inset
(b): the raw data. Plotting P2 against jx − yj as usual, we observe
no collapse. The dotted lines are a guide to the eye.
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fractals, with the two-point connectivity decaying as
a power law P2ðHÞ ∼ jx − yj2½DfðHÞ−2� [47]. By (17),
P2ðHÞ ∼ 1þ 2H ln jx − yj for H close to 0 and
ln jx − yj ≪ 1=ð−HÞ. Now, in this regime, a field with
H < 0 is indistinguishable from a 2D GFF in a system of
size L such that lnL ¼ 1=ð−HÞ [27]. Therefore, we can
rewrite P2ðHÞ ∼ 1 − ln jx − yj= lnL, recovering the form
of (2).
Conclusion.—We showed that the level sets of the 2D

Gaussian free field have a nontrivial percolation transition
and outlined a theory of the critical point. In particular, the
critical level clusters are found to be log fractals, whose
connectivity properties are determined by the random
topology of the contour lines. The analysis presented above
can be extended to any n-point connectivity, which is
mapped to a branching random walk. The emergence of
such a hierarchical structure in the 2D GFF is not at all new.
For instance, it is crucial in the problem of extreme value
statistics of the 2D GFF, also known as log-correlated
random energy models or multiplicative chaos [48–52].
The latter problem admits, nevertheless, a conformal field
theory description [53–55]. Whether the same can be said
of the level clusters of the 2D GFF seems to be an
interesting question. We remark that the level clusters
for H < 0 seem to be described by a new CFT, some
features of which have been numerically studied [15]. As
discussed above, the logs that appear in (2) can be obtained
from certain correlators in the H < 0 CFT, which do not
involve an indecomposable representation of the conformal
symmetry [56,57] or a continuous spectrum [58]. Whether
such structures exist in the putative H ¼ 0 CFT remains to
be seen.
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