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The quantum multiparameter estimation is very different from the classical multiparameter estimation
due to Heisenberg’s uncertainty principle in quantum mechanics. When the optimal measurements for
different parameters are incompatible, they cannot be jointly performed. We find a correspondence
relationship between the inaccuracy of a measurement for estimating the unknown parameter with the
measurement error in the context of measurement uncertainty relations. Taking this correspondence
relationship as a bridge, we incorporate Heisenberg’s uncertainty principle into quantum multiparameter
estimation by giving a trade-off relation between the measurement inaccuracies for estimating different
parameters. For pure quantum states, this trade-off relation is tight, so it can reveal the true quantum limits
on individual estimation errors in such cases. We apply our approach to derive the trade-off between
attainable errors of estimating the real and imaginary parts of a complex signal encoded in coherent states
and obtain the joint measurements attaining the trade-off relation. We also show that our approach can be
readily used to derive the trade-off between the errors of jointly estimating the phase shift and phase
diffusion without explicitly parametrizing quantum measurements.
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The random nature of quantum measurement imposes
ultimate limits on the precision of estimating unknown
parameters with quantum systems. Quantum parameter
estimation theory has been developing for more than half
a century to reveal and pursue the quantum-limited meas-
urement [1–9]. In classical parameter estimation theory, the
Cramér-Rao bound (CRB) together with the asymptotic
normality of the maximum likelihood estimator give a
satisfactory approach to derive the asymptotically attain-
able accuracy of estimation, where the Fisher information
matrix (FIM) plays a pivotal role [10–17]. The CRB and the
FIM have been extended to the quantum regime [1–6],
where not only estimators—data processing—but also
quantum measurements are taken into consideration in
optimization.
For single-parameter estimation, Helstrom’s version of

quantum CRB can be attained at large samples due to the
asymptotic efficiency of adaptive measurements [8,18–20].
However, unlike the classical parameter estimation, the
quantum CRB does not possess the asymptotic attainability
in general for multiparameter estimation. This can be
understood as a consequence of the fact that the optimal
measurements for different parameters may be incompat-
ible in quantum mechanics so that they cannot be jointly
performed according to Heisenberg’s uncertainty principle
(HUP) [21,22]. Many application scenarios, e.g., super-
resolution imaging [23,24], quantum enhanced estimation
of a magnetic field [25,26], and joint estimation of phase
shift and phase diffusion [27], essentially belong to

quantum multiparameter estimation problems. Therefore,
the characterization of the quantum-limited bound on the
estimation errors is of great importance to many practical
applications of quantum estimation. Nevertheless, it is still
challenging to derive, characterize, and understand the
quantum limit on accuracies of the multiparameter estima-
tion [9,28–48].
Because of the difficulty in identifying the boundary

between the forbidden and permissible regions of error
composition, as a compromise, many prior error bounds
are formulated in terms of the weighted mean errors of
estimation [1–3,6,9,28–48]. Themost powerful lower bound
on weighted mean errors up to now is the Holevo bound
[6,30], which is asymptotically attainable by collective
measurements on a large number of identical samples
[49–53]. However, the Holevo bound contains an optimiza-
tion over a set of special operators, so that the evaluation of
the Holevo bound is difficult [30]. Remarkably, Carollo et al.
derived an upper bound on the discrepancy ratio between the
Holevo bound and Helstrom’s version of quantum CRB
through a quantity measuring the incompatibility regarding
different parameters [28]. With these lower and upper
bounds, we can reveal the quantum limits on weighted mean
errors; nevertheless, it is still difficult to completely identify
the trade-off curve or surface regarding the attainable errors
for estimating different parameters [34,42]. It is still unclear
how the HUP affects the boundary of the attainable errors.
In this work, we tackle the problem of completely

identifying the boundary of the attainable errors of
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estimating multiple parameters by directly incorporating
the HUP into quantum multiparameter estimation. We
define the regret of Fisher information for a quantum
measurement that is used to estimate an unknown param-
eter and shall derive the following correspondence relation:

information regret ↔ measurement error:

Taking this relationship as a bridge, we obtain trade-off
relations between the information regrets for different
parameters through Branciard’s and Ozawa’s versions of
measurement uncertainty relations in terms of the state-
dependent measurement error defined by Ozawa [54–59].
This trade-off relation is tight for pure quantum states, so it
can faithfully reveal the quantum limits on multiparameter
estimation errors with pure quantum states. We shall apply
the regret trade-off relation to the coherent state estimation
and the joint estimation of phase shift and phase diffusion.
Let us start with a brief introduction on quantum

multiparameter estimation. Let θ ¼ ðθ1; θ2;…; θnÞ ∈ Rn

be an unknown vector parameter, which can be estimated
via observing a quantum system. The state of the quantum
system depends on the true value of θ and is described by a
parametric density operator ρθ. The quantum measurement
can be characterized by a positive-operator-valued measure
(POVM)M ¼ fMxjMx ≥ 0;

P
x Mx ¼ 1g, where x denotes

the outcome and 1 is the identity operator. Denote the
estimator for θ by θ̂ ¼ ðθ̂1; θ̂2;…; θ̂nÞ, which is a map from
the observation data to the estimates. Theestimation error can
be characterized by the error-covariancematrix defined by its
entries Ejk ¼ Eθ½ðθ̂j − θjÞðθ̂k − θkÞ�, where the expectation
Eθ½•� is taken with respect to the observation data with
the joint probability mass function pθðx1; x2;…; xνÞ ¼Q

ν
j¼1 trðMxνρθÞ, with ν being the number of experimental

runs with independent and identically distributed samples.
The error-covariance matrix of any unbiased estimator θ̂
obeys the CRB E ≥ ν−1F−1 in the sense that the matrix
E − ν−1F−1 is positive semidefinite [14–17], where F is the
(classical) FIM for a single experimental run and defined by

Fjk ¼ Eθ

�∂ lnpθðxÞ
∂θj

∂ lnpθðxÞ
∂θk

�
; ð1Þ

with pθðxÞ ¼ trðMxρθÞ. The CRB is asymptotically attain-
able by the maximum likelihood estimator [10,11], whose
distribution at a large ν is approximate to a multivariate
normal distribution with the mean being the true value of θ
and the covariance matrix being ν−1F−1, according to the
central limit theorem (Theorem 9.27 [15]).
The FIM depends on the quantum measurement via

pθðxÞ ¼ trðMxρθÞ, and so does the CRB. We use FðMÞ to
explicitly indicate the dependence of F on a POVM M.
Quantum parameter estimation takes into consideration
the optimization over quantum measurements. For any

quantum measurement, the FIM is bounded by the follow-
ing matrix inequality [18,60]:

FðMÞ ≤ F ; ð2Þ

where F is the so-called quantum FIM, also known as the
Helstrom information matrix [1,2]. The quantum FIM is
the real part of a Hermitian matrix Q (i.e., F ¼ ReQ)
defined by

Qjk ¼ trðLjLkρθÞ; ð3Þ

where Lj, the symmetric logarithmic derivative (SLD)
operator for θj, is a Hermitian operator satisfying
ðLjρθ þ ρθLjÞ=2 ¼ ∂ρθ=∂θj. Combining Eq. (2) with
the CRB yields the quantum CRB E ≥ ν−1F−1 for any
quantum measurement and any unbiased estimator. This
quantum CRB was first obtained by Helstrom with a
different method [1,2].
To characterize the inaccuracy of a quantum measure-

ment for multiparameter estimation, we here define the
regret of Fisher information by

RðMÞ ¼ F − FðMÞ: ð4Þ

This matrix RðMÞ is positive semidefinite due to Eq. (2)
and real symmetric as both the quantum and classical FIMs
are real symmetric according to their definitions. For
single-parameter estimation, Braunstein and Caves proved
that the classical Fisher information can equal the quantum
Fisher information with an optimal quantum measurement
[18], and thus the regret RðMÞ thereof vanishes. In the
multiparameter setting, for any column vector v ∈ Rn,
there exists a quantum measurement M such that
v⊤RðMÞv ¼ 0, where ⊤ denotes matrix transpose. This
is because v⊤FðMÞv and v⊤Fv can be interpreted as the
classical and quantum Fisher information, respectively,
about a parameter φ satisfying ∂=∂φ ¼ P

j vj∂=∂θj.
The POVMM making vRðMÞv⊤ vanish can be considered
as an optimal measurement for estimating φ and in general
depends on v. For different parameters, the optimal
measurement may be different and even incompatible.
Consequently, the entries of RðMÞ in general cannot
simultaneously vanish, which is a manifestation of HUP.
In what follows, we give a quantitative characterization of
the mechanism in which the HUP affects the regret matrix
of Fisher information.
Define by Δj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rjj=F jj

p
the normalized-square-root

regret of Fisher information with respect to θj. Note that Δj

takes value in the interval [0, 1]. Our main result is the
following trade-off relation:

Δ2
j þ Δ2

k þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2jk

q
ΔjΔk ≥ c2jk; ð5Þ
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where cjk is a real number given by

cjk ¼
jImQjkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReQjjReQkk
p ¼ jImQjkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F jjF kk
p ; ð6Þ

with Qjk being given by Eq. (3). For nonzero cjk, Eq. (5)
describes the trade-off between the regrets of Fisher
information with respect to different parameters. For a
family ρθ of pure states, the inequality Eq. (5) is tight, in the
sense that there exists a quantum measurementM such that
the equality in Eq. (5) holds; in such a case, our result fully
reflects the trade-off between different regrets of Fisher
information. For mixed states ρθ, the inequality Eq. (5) can
be tightened by replacing cjk thereof by its variant,

c̃jk ¼
trj ffiffiffiffiffi

ρθ
p ½Lj; Lk� ffiffiffiffiffi

ρθ
p j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F jjF kk

p ; ð7Þ

where jXj ¼
ffiffiffiffiffiffiffiffiffi
X†X

p
for an operator X. Note that the

coefficient c̃jk is not less than cjk for all quantum states
and equal to cjk for all pure states. We also give the second
form of the trade-off relation in terms of the estimation
errors:

γj þ γk − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c̃2jk

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − γjÞð1 − γkÞ

q
≤ 2 − c̃2jk; ð8Þ

where we have defined γj ¼ 1=ðνEjjF jjÞ for simplicity.
The above inequality is a result of combining Eq. (5) with
the classical CRB Ejj ≥ ν−1ðF−1Þjj ≥ 1=ðνFjjÞ.
We here outline the proof of Eq. (5) and provide the

details in the Supplemental Material [61]. Denote byHs the
Hilbert space associated with the underlying quantum
system. For a given POVM M on Hs, we define a
measurement channel ΦðρÞ ¼ P

x trðMxρÞjxihxj, where
fjxig is an orthonormal basis associated with the meas-
urement outcomes x’s and span another Hilbert space Hr.
Note that the density operators ΦðρθÞ are always diagonal
with the basis fjxig. As a result, the SLD operators of
ΦðρθÞ are also diagonal with the basis fjxig and can be
represented as

L̃j ¼
X

x

∂ ln trðMxρθÞ
∂θj jxihxj: ð9Þ

The measurement channel Φ can be implemented by a
unitary operation U acting on Hs ⊗ Hr ⊗ Hr such that

ΦðρÞ ¼ tr1;3½Uðρ ⊗ j0ih0j ⊗ j0ih0jÞU†� ð10Þ

for all density operators ρ on Hs, where tr1;3 denotes the
partial trace over the first and third tensor factors of the
Hilbert space and j0i can be an arbitrary initial state
(Ref. [65], Chap. 2) (see Fig. 1 for a schematic illustration).

Using the techniques developed in Ref. [66], we show
that [61]

Rjj ¼ tr½ðLj − Lj ⊗ 1r ⊗ 1rÞ2ρtotal�; ð11Þ

where Lj ¼ U†ð1s ⊗ L̃j ⊗ 1rÞU with 1s and 1r being the
identity operators on Hs and Hr, respectively, and
ρtotal ¼ ρθ ⊗ j0ih0j ⊗ j0ih0j.
We observe that Rjj expressed in Eq. (11) is of the same

form as the square of Ozawa’s definition of measurement
error [54,55,67], by taking Lj as the ideal observable we
intend to measure and Lj as the observable actually
measured. We list in Table I the correspondence relation
between the parameter estimation scenario and the meas-
urement error scenario. Note that the Hermitian operators
Lj and Lk always commute, as both L̃j and L̃k are diagonal
with the basis fjxig. Therefore, the observables Lj and Lk

can be jointly measured in quantum mechanics. When two
ideal observables Lj and Lk do not commute, it may be
impossible to make their measurement errors, which equals
the regrets Rjj and Rkk in our context, simultaneously
vanish. By invoking the measurement uncertainty relations
[54–56,58,59,68] in terms of Ozawa’s definition of meas-
urement error, we can derive the trade-off relation between
the regrets of Fisher information with respect to different
parameters. Concretely, the inequality Eq. (5) follows from
Branciard’s version of measurement uncertainty relation,
which is tight for pure states [58]. Using Ozawa’s work on
strengthening Branciard’s inequality for mixed states [68],

FIG. 1. Unitary implementation (the dashed box) of the
measurement channel. The thick red lines stand for the input
and output ports. The commuting observables L̃j and L̃k can be
jointly measured in the output state ΦðρθÞ, which in the
Heisenberg picture is equivalent to the joint measurement of a
pair of commuting observables Lj ¼ U†ð1s ⊗ L̃j ⊗ 1rÞU and
Lk ¼ U†ð1s ⊗ L̃k ⊗ 1rÞU in the initial state ρtotal ¼ ρθ ⊗
j0ih0j ⊗ j0ih0j of the entirety.

TABLE I. Correspondence relation.

Estimation-regret scenario Measurement-error scenario

Regret of Fisher information Measurement error
SLD Lj of ρθ Ideal observable Lj on ρθ
SLD L̃j of ΦðρθÞ Approximate observable on ΦðρθÞ
Lj ¼ U†ð1s ⊗ L̃j ⊗ 1rÞU Approximate observable on ρθ
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the inequality Eq. (5) can be tightened through replacing
cjk by c̃jk.
It is worth pointing out that we do not designate the SLD

operator as the ideal observable in reality to optimally
estimate an individual parameter. Although the eigenstates
of the SLD operator, which possibly depend on the true
value of the parameter, in principle constitute a measure-
ment basis extracting the maximum Fisher information at a
parameter point [18], it is possible for some models to find
a global optimal measurement that is independent of the
parameter [6,19]; a global optimal measurement is often
more ideal than a local one for estimating the unknown
parameter.
We can give an operational significance to the coef-

ficients c̃jk through the trade-off relation Eq. (5) as follows.
If the quantum Fisher information about a parameter θj is
exhaustively extracted by a quantum measurement M, i.e.,
Δj ¼ 0, then it follows from Eq. (5) that the regret for any
other parameter θk obeys Δk ≥ c̃jk. That is, c̃jk is the lower
bound on the residual regret for θk when there is no regret
for θj. For pure states, this lower bound becomes Δk ≥ cjk,
which can be attained as Eq. (5) is tight in such cases.
Let us now consider as an example the estimation of a

complex number α encoded in a coherent state [69] jαi. The
parameters of interest are the real and imaginary parts of α;
i.e., θ1 ¼ Reα and θ2 ¼ Imα. After some algebra, we get
Q ¼ 4ð1i i1Þ and thus c12 ¼ 1. The regret trade-off Eq. (5)
then becomes Δ2

1 þ Δ2
2 ≥ 1, which is equivalent to F11 þ

F22 ≤ 4 in terms of Fisher information or

1

νE11

þ 1

νE22

≤ 4 ð12Þ

in terms of estimation errors. As shown in Fig. 2, Eq. (12)
gives the most informative lower bound on the estimation
error, compared with the error bounds that were previously
investigated [3,5,6,34].
For this example, there exists a family of optimal (single-

copy) measurements extracting the Fisher information such
that the regret trade-off relation in the above example,
Δ2

1 þ Δ2
2 ≥ 1, is saturated. As a result, the error bound in

Eq. (12) can be asymptotically attained. We construct the
optimal measurement as follows. Denote by a the annihi-
lation operators for the mode for which the coherent state is
defined. The measurements of the quadrature components
Q ¼ ðaþ a†Þ=2 and P ¼ ða − a†Þ=ð2iÞ are natural for
estimating the coherent signal, as hαjQjαi ¼ Reα and
hαjPjαi ¼ Imα. Indeed, the maximum Fisher information
about θ1 and θ2 can be obtained by measuring Q and P,
respectively, corresponding to either F11 ¼ 4 or F22 ¼ 4.
However, Q and P are not commuting so that they cannot
be jointly measured. It is known that we can jointly
measure the commuting operators Q −Q0 and Pþ P0,
where Q0 and P0 are the quadrature components of an
ancillary mode (whose annihilation operator is denoted by

a0) in the vacuum state, to estimate the real and imaginary
parts of α; see Refs. [3,5,6]. This measurement strategy
attains the minimum unweighted arithmetic-mean error of
estimation with F11 ¼ F22 ¼ 2; see the blue circle in
Fig. 2. We show in the Supplemental Material [61] that
other error combinations on the bound Eq. (12) can be
asymptotically attained if we prepare the ancillary mode in
a squeezed vacuum state exp½1

2
ðra02 − ra0†2Þ�j0i with

r ∈ R. In such case, the extracted FIM can be tuned by
changing r as F11 ¼ 4=ðe2r þ 1Þ, F22 ¼ 4e2r=ðe2r þ 1Þ,
and F12 ¼ F21 ¼ 0. Moreover, the joint probability density
function of outcomes of Q −Q0 and Pþ P0 are both
Gaussian, so taking their sample means as the estimates
for θ1 and θ2 asymptotically attains the classical CRB.
In our second example, we consider the joint estimation

of phase shift and phase diffusion [27]. For a two-mode
probe state, the parametric density operator can be effec-
tively simplified as ρ ¼ 1

2
ðj0ih0j þ j1ih1j þ e−iθ1−θ

2
2 j0i×

h1j þ eiθ1−θ
2
2 j1ih0jÞ, where θ1 stands for the phase shift and

θ2 the phase diffusion. In Ref. [27], Vidrighin et al.
obtained the trade-off relation F11=F 11 þ F22=F 22 ≤ 1
by explicitly parametrizing the rank-1 POVMs and then
taking optimization. We here show that the trade-off
relation of Vidrighin et al. follows from our regret trade-
off relation Eq. (5) in a very easy way. We only need to

FIG. 2. Mean-square errors of estimating the real and imaginary
parts of a complex number α encoded in a coherent state jαi. The
regions below the curves are forbidden by the corresponding
inequalities. The black solid curve stands for the inequality
Eq. (12) from the regret trade-off relation. The other three curves
correspond to the generalized-mean CRBs based on the SLD and
the right logarithmic derivative (RLD) obtained in Ref. [34].
Specifically, the red dashed curve stands for the RLD-based
geometric-mean quantum CRB given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22

p
≥ 1=ð2νÞ, the

blue dash-dotted curve stands for the RLD-based arithmetic-
mean quantum CRB given by ðE11 þ E22Þ=2 ≥ 1=ð2νÞ, and the
green dotted curve stands for the SLD-based harmonic-mean
quantum CRB given by 2=ðE−1

11 þ E−1
22 Þ ≥ 1=ð4νÞ.
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show c̃12 ¼ 1 by a straightforward calculation according to
its definition (see the Supplemental Material [61] for the
details). As a result, we get Δ2

1 þ Δ2
2 ≥ 1, which is

equivalent to the trade-off relation of Vidrighin et al., by
recognizing Δ2

j ¼ 1 − Fjj=F jj.
In conclusion, we have directly incorporated the HUP

into quantum multiparameter estimation by deriving a
trade-off relation between the regrets of Fisher information
about different parameters. Unlike the quantum CRBs on
scalar mean errors, the regrets trade-off quantitatively
characterizes how the HUP affects the combinations of
estimation errors for multiple parameters. The correspon-
dence relationship we found between information regret
and measurement error also, as a bonus, supplies an
operational meaning to Ozawa’s definition of the state-
dependent measurement error, on which a controversy has
existed for a long time [67,70,71].
Our approach also opens a new perspective on quantum

geometry. The matrixQ defined by Eq. (3) is known as the
quantum geometric tensor on the manifold of physical
quantum state, up to an insignificant constant factor
[72,73]. The real part of Q—the quantum FIM—gives a
Riemannian metric on the manifolds of quantum states. The
imaginary part of Q gives a curvature form of Berry’s
connection [73], which has relations to the quantum FIM
[28,74] and the density of quantum states [75]. It is known
that a zero curvature is necessary for the simultaneous
vanishing of the regrets of Fisher information about
different parameters [8,33,36,48]. Note that in our trade-
off relation, cjk is the curvature divided by a scalar
related to the entries of the quantum FIM. So our trade-off
relation quantitatively characterizes the intricate mecha-
nism in which the simultaneous reduction of the regrets
of Fisher information about different parameters is
restricted by a nonzero quantum curvature, which is
indicated as

information regret ← quantum curvature:

Carollo et al. has proposed an incompatibility index, which
is similar to cjk, based on the ratio between the curvature
and the quantum FIM as a figure of merit for the quantum-
ness of a quantum multiparameter estimation model [28].
In addition, since c̃jk is better than cjk to manifest the
regrets trade-off for mixed states, it may be possible to take
the quantity trj ffiffiffiffiffi

ρθ
p ½Lj; Lk� ffiffiffiffiffi

ρθ
p j as an alternative form of

quantum curvature.
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