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We analyze the ultimate quantum limit of resolving two identical sources in a noisy environment. We
prove that in the presence of noise causing false excitation, such as thermal noise, the quantum Fisher
information of arbitrary quantum states for the separation of the objects, which quantifies the resolution,
always converges to zero as the separation goes to zero. Noisy cases contrast with noiseless cases where the
quantum Fisher information has been shown to be nonzero for a small distance in various circumstances,
revealing the superresolution. In addition, we show that false excitation on an arbitrary measurement, such
as dark counts, also makes the classical Fisher information of the measurement approach to zero as the
separation goes to zero. Finally, a practically relevant situation resolving two identical thermal sources is
quantitatively investigated by using the quantum and classical Fisher information of finite spatial mode
multiplexing, showing that the amount of noise poses a limit on the resolution in a noisy system.
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The Rayleigh criterion poses a limit of resolution of two
incoherent objects in classical optics [1,2]. Recently,
inspired by quantum optics and quantum metrology,
superresolution overcoming the Rayleigh limit has been
proposed by replacing a conventional direct imaging
technique with structured measurement techniques in a
weak source regime [3]. Since the breakthrough, the
superresolution technique has been generalized for two
incoherent thermal sources [4], for arbitrary quantum
states of two objects [5], for two-dimensional imaging
[6], for three-dimensional imaging [7,8], for estimating
spatial deformation [9], and for an arbitrary number of
sources [10–13], and it has been also studied from the
perspective of channel discrimination [14,15]. Also, many
proof-of-principle experiments have demonstrated that
elaborately constructed measurements enable surpassing
the Rayleigh limit in practice [16–20]. The main idea of
revealing superresolution is to show that the quantum
Fisher information (QFI) of two objects’ separation, the
inverse of which limits the estimation error of the
separation, is still nonzero when the separation converges
to zero. This behavior contrasts with a conventional direct
imaging method whose classical Fisher information (CFI)
vanishes as the separation drops to zero, making the
estimation error of the separation diverge for a small
separation.
More recently, the effects of noise on superresolution

techniques started to be analyzed. The CFI of two point
sources’ separation using a spatial mode demultiplexing
scheme has been shown to vanish in the presence of dark
counts [21] or measurement crosstalk [22] when the
separation is small. However, these analyses are restricted
to specific measurement schemes. Meanwhile, the QFI of

resolving two incoherent thermal point sources also van-
ishes for small separations in the presence of thermal
background noise [23]. In this case, the influence of
detection noise has not been systematically analyzed.
Besides, previous studies are limited to uncorrelated
classical states such as thermal states and weak point
sources. More general quantum states need to be analyzed
for applications on microscopy where we can manipulate
quantum states of light emitted from sources to improve
resolution.
In this Letter, we consider a more general situation of

resolving two identical sources in arbitrary quantum states,
assuming a generic noise model inevitable in experiments,
which we call excitation noise. Excitation noise is a type of
noise causing false excitation that cannot be distinguished
from signal photons, which includes thermal background
noise and dark counts. We first prove that excitation noise
makes QFI vanish for small separations, which indicates
that the resolution of two close sources is inherently
vulnerable to noise in practical imaging processes. We
also provide a quantitative analysis of noise in resolving
two identical incoherent thermal sources. We then show
that the CFI of arbitrary measurement affected by excitation
noise on detectors vanishes for small separations. Notably,
our results reproduce previous studies about the impact of
noises on particular imaging processes and states [21–23].
Finally, we show that in the presence of thermal noise, a
finite spatial mode demultiplexing (fin-SPADE) measure-
ment is nearly optimal when the signal-to-noise ratio (SNR)
is large.
The model.—Consider two identical sources with a sepa-

ration s > 0 that emit light described by two orthogonal
creation operators ĉ†1;2. The emitted light reaches the image
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plane being attenuated such that ĉ†1;2 →
ffiffiffi
η

p
â†1;2 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
û†1;2

with environmental modes û†1;2 and being distorted as

â†1 ≡
Z

∞

−∞
dxψðx − s=2Þâ†x and

â†2 ≡
Z

∞

−∞
dxψðxþ s=2Þâ†x: ð1Þ

Here, ψðxÞ represents the point-spread function (PSF)
of the imaging system, assumed to be real for
simplicity. Also, the mode operators for different positions
satisfy the canonical commutation relation (CCR)
½âx; â†x0 � ¼ δðx − x0Þ. In general, the two mode operators
do not obey the CCR since the two PSFs ψðx� s=2Þ have
a nonzero overlap, i.e., ½â1; â†2� ≠ 0. Thus, we define
symmetric and antisymmetric modes â� to orthogonalize
them [3–5,7] as

â� ≡ â1 � â2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� δÞp and

δðsÞ≡
Z

∞

−∞
dxψðxþ s=2Þψðx − s=2Þ; ð2Þ

which satisfy the CCR, i.e., ½âþ; â†−� ¼ 0. Now, the overall
dynamics can be captured as

ĉ†� ≡ ĉ†1 � ĉ†2ffiffiffi
2

p →
ffiffiffiffiffiffi
η�

p
â†� −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η�

p
û†�; ð3Þ

where η� ≡ ð1� δÞη represent effective attenuation rates,
and û� represent auxiliary modes. Furthermore, the
imaging process of estimating the separation s can be
described by the following dynamics of the mode oper-
ators [5,24],

dâ�
ds

¼ i½Ĥeff
� ; â��; ð4Þ

where the effective Hamiltonians are written as

Ĥeff
� ¼ i

dθ�
ds

ðĉ†�v̂� − ĉ�v̂
†
�Þ − iB�ðâ�b̂†� − â†�b̂�Þ; ð5Þ

where v̂� are the environmental mode operators before the
transformation, θ� ≡ arccos

ffiffiffiffiffiffi
η�

p
,

b̂� ≡ 1

B�

∂â�
∂s and B� ≡ −

ϵ�
2

ffiffiffiffiffiffiffiffiffiffiffi
1� δ

p : ð6Þ

Thus, mode operators b̂� represent the derivative of the
spatial modes, â�ðsþ dsÞ ≈ â�ðsÞ þ ∂sâ�ðsÞds. We have
also defined the following parameters:

ϵ2� ≡ Δk2 ∓ β −
γ2

1� δ
; γ ≡ δ0ðsÞ; Δk2 ≡ βð0Þ; and

ð7Þ

βðsÞ≡ −δ00ðsÞ ¼
Z

∞

−∞
dx

dψðxþ s=2Þ
dx

dψðx − s=2Þ
dx

: ð8Þ

Here, γ represents the variation of the overlap from the
changes of the separation s, Δk2 accounts for the variance of
the momentum operator −i∂x, and β represents interference
between the derivatives of the PSFs. The effective
Hamiltonians show that when the separation s changes, the
attenuation to the environment û� varies and the derivative
modes b̂� are excited through the beam-splitter-like
Hamiltonian, which is the last term in Eq. (5). Note that
the model assumes that the light evolves under a passive
transformation before reaching the image plane and that since
we use the Heisenberg picture, the emitted light from sources
can be an arbitrary quantum state.
QFI in a noisy system.—From the perspective of quan-

tum metrology, resolution can be quantified by the QFI of
the separation s [3]. QFI HðθÞ of a quantum state ρ̂ðθÞ for
an unknown parameter θ gives a lower bound of the
estimation error for θ, Δ2θ ≥ 1=MHðθÞ, which is the so-
called quantum Cramér-Rao inequality [25–28]. Here,M is
the number of independent trials. Note that the quantum
Cramér-Rao inequality indicates that the estimation error
diverges if the QFI vanishes.
Before we present our main result, we define
excitation noise as a type of noise that transforms

any quantum state to be a full-rank state. The physical
interpretation of the noise is that it introduces false
excitation indistinguishable from the signal. Thermal
background noise is such noise, which is described by a
beam-splitter interaction with an environmental mode in
a thermal state of a nonzero photon number [29], because
thermal background noise transforms a state into a full-
rank state.
Now, we present our main result.
Proposition 1.—For imaging processes in the presence

of excitation noise, the QFI for the separation s of two
identical sources in arbitrary quantum states converges to
zero as s → 0.
Proof.—Let ρ̂ðsÞ be an arbitrary quantum state of light at

the image plane emitted by two identical sources separated
by s. First, because the two objects are identical, replacing s
by −s does not change the description of the system. Thus,
we have dρ̂=ds ∝ sσ̂ with a Hermitian operator σ̂ for small
s ≪ 1, which is explicitly shown in Ref. [24]. Meanwhile,
since noise may occur in any relevant mode in the system,
the quantum state ρ̂ðsÞ is full rank after undergoing
excitation noise.
Recall that QFI is written as HðsÞ ¼ Tr½ρ̂ðsÞL̂ðsÞ2�,

where L̂ is a symmetric logarithmic derivative operator
satisfying the equation ∂sρ̂ðsÞ ¼ ½ρ̂ðsÞL̂ðsÞ þ L̂ðsÞρ̂ðsÞ�=2
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[25–28]. Writing the quantum state in a spectral decom-
position form ρ̂ðsÞ ¼ P

i pijψ iihψ ij and using dρ̂=ds ∝ sσ̂,
the symmetric logarithmic derivative operator can be
written as [28]

L̂ðsÞ ¼ 2
X

i;j∶piþpj>0

hψ ij∂sρ̂ðsÞjψ ji
pi þ pj

jψ iihψ jj

≈ 2s
X

i;j∶piþpj>0

hψ ijσ̂jψ ji
pi þ pj

jψ iihψ jj þOðs2Þ: ð9Þ

By the definition of excitation noise, pi þ pj > 0 for all i,
j, and pi þ pj does not converge to zero as s → 0; hence,
HðsÞ ¼ Tr½ρ̂L̂2� ∝ s2 → 0 as s → 0 [30]. (A similar
argument has been used in the context of quantum spectro-
scopy [31]).
Note that although we assumed excitation noise for

simplicity, it is sufficient for a final state to be full rank
only in the subspace of signal operator σ̂ to prove the same
result. The proposition can be intuitively explained by
noting that the signal in the imaging system approaches
zero for s → 0, indicated by dρ̂=ds ∝ sσ̂, while the noise
ratio remains finite. Therefore, the SNR vanishes for small
s, which leads to a vanishing QFI. In contrast, when the
quantum state is not full rank in the support of σ̂ around
s ¼ 0, there exists pi > 0 and jψ ii such that pi → 0 as
s → 0 and a projection measurement onto jψ iihψ ij gives a
nonzero QFI element. Therefore, the QFI may not vanish
for a small s, which accounts for the nonzero QFI for
noiseless cases [3–5].
Note that attenuation channels, where a vacuum state

occupies the environmental mode ê, do not introduce false
excitation but diminish the signal. Thus, the QFI of s does
not necessarily vanish as s → 0. We emphasize that the
proposition does not rule out the possibility of super-
resolution overcoming the Rayleigh limit but implies that
when the objects are close and the system is noisy, the QFI
of the separation can be extremely small. We supply an
important example to analyze the effect of noise in the
following section.
Two identical thermal sources.—Consider two incoher-

ent thermal sources with an unknown separation s. When
the modes â1, â2 are occupied by thermal states of the mean
photon number Ns, the symmetric and antisymmetric
modes âþ and â− can also be described by thermal states
of the mean photon number ηNsð1þ δÞ and ηNsð1 − δÞ,
respectively [4,5]. Introducing thermal noise characterized
by the same mean photon number Nn onto the relevant
modes â� and b̂�, the quantum state is written as the
product of the states of symmetric and antisymmetric
modes, ρ̂ ¼ ρ̂þ ⊗ ρ̂−, where

ρ̂�ðsÞ ¼ ρ̂TfηNs½1� δðsÞ� þ Nng ⊗ ρ̂TðNnÞ: ð10Þ

Here, each mode corresponds to â� and b̂�, respectively,
and ρ̂TðNÞ represents a thermal state with the mean photon
number N.
Using the QFI formula of Gaussian states [32–38], we

obtained the QFI of the separation s [24],HðsÞ ¼ HþðsÞ þ
H−ðsÞ with

H�ðsÞ ¼
η2N2

sγ
2

½ηNsð1� δÞ þ Nn þ 1�½ηNsð1� δÞ þ Nn�

−
2η2N2

sf½1� δ�½δ00ð0Þ ∓ δ00ðsÞ� þ γ2g
½2Nn þ 1�½2ηNsð1� δÞ þ 2Nn þ 1� − 1

:

ð11Þ

Here, H�ðsÞ represent the QFI from symmetric and
antisymmetric modes, respectively. The first and second
term accounts for the changes of the mean photon number
on mode â� from the change of effective attenuation factors
η� and the transformation of the spatial modes’ shape
â�ðsÞ into â�ðsþ dsÞ ≈ â�ðsÞ þ ds∂sâ�.
The QFI recovers previous results when Nn ¼ 0

in Refs. [4,5]. More importantly, the QFI vanishes as
s → 0 unless Nn ¼ 0. Figure 1(a), (b) compare the QFI
HðsÞ in the ideal and noisy cases with the Gaussian PSF,
ψðxÞ ¼ e−x

2=4σ2=ð2πσ2Þ1=4. A remarkable difference
between the two cases is that as s → 0, the QFI in the

FIG. 1. QFI with respect to s and Ns with (a) Nn ¼ 0 (noise-
less) and (b) Nn ¼ 0.01. In the noiseless case, the quantum Fisher
information does not decrease as s decreases. However, even with
a small amount of noise photons, the QFI drops for small s. The
dotted line in (b) shows local maxima of QFI for fixed ηNs,
Nn > 0, and SNR ≫ 1 as shown in (c). (c) Normalized QFI when
SNR ≫ 1 with respect to s with ηNs ¼ 104; 103; 102; 10; 1 from
the left to the right and Nn ¼ 0.01. The horizontal line represents
Hðs�Þ and the vertical lines s� (see the main text). It captures the
nonmonotonic behavior of QFI. (d) Normalized QFI when
SNR ≪ 1 with ηNs ¼ 10−4; 10−3; 10−2; 10−1 from the bottom.
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noisy case rapidly drops, whereas it does not change in the
ideal case. For example, when the separation s is 0.01σ and
the mean signal photons ηNs is 1, the QFI HðsÞ is 0.5=σ2
and 6 × 10−4=σ2 for the noiseless case and the noisy case
with Nn ¼ 0.01, respectively, which clearly shows that
even a small amount of noise can be critical to the
resolution.
Let us consider the regime where the SNR is large,

SNR≡ ηNs=Nn ≫ 1. In this regime, Fig. 1(c) shows
another interesting feature of QFI: it is not monotonic
with respect to s. For a small separation s ≪ σ in
the regime, the QFI for the Gaussian PSF can be approxi-
mated by

HðsÞ ≈ 4η2N2
ss2

η2N2
ss4 þ 8ηNss2σ2 þ 64NnðNn þ 1Þσ4 ; ð12Þ

which has the local maximum

Hðs�Þ ≈ ηNs

2σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

n þ Nn

p
ðNn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

n þ Nn

p
Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

n þ Nn

p
þ Nn þ 1Þ

≈
Nn≪1 ηNs

2σ2
1

1þ 2
ffiffiffiffiffiffi
Nn

p ð13Þ

at s� ¼ 2
ffiffiffi
2

p ðN2
n þ NnÞ1=4σ=

ffiffiffiffiffiffiffiffi
ηNs

p
, as shown in Fig. 1(c).

Here s� is a characteristic length scale, and if s ≪ s�, the
QFI can be further approximated as

HðsÞ ≈ η2N2
s

NnðNn þ 1ÞΔk
4s2 ¼ η2N2

s

NnðNn þ 1Þ
s2

16σ4

≈
Nn≪1 η2N2

s

Nn

s2

16σ4
if ηNs ≫ Nn and s ≪ s�: ð14Þ

One can observe that when SNR ≫ 1,Nn ≪ 1, and s ≪ s�,
the QFI per a signal photon is proportional to the SNR
HðsÞ=ηNs ∝ ηNs=Nn, which is consistent with the pre-
vious results [21,23]. Also, the QFI decreases quadratically
as s → 0.
On the other hand, when the SNR is small, i.e.,

ηNs=Nn ≪ 1, and the separation is small, s ≪
ffiffiffi
6

p
σ, the

QFI is approximated by

HðsÞ ≈ η2N2
s

2NnðNn þ 1Þ ½3Δk
4 þ δð4Þð0Þ�s2

¼ η2N2
s

NnðNn þ 1Þ
3s2

16
if ηNs ≪ Nn and s ≪

ffiffiffi
6

p
σ;

ð15Þ

which is shown in Fig. 1(d). Again, when Nn ≪ 1, the QFI
per a signal photon is proportional to the SNRHðsÞ=ηNs ∝
ηNs=Nn and decreases quadratically as s → 0.
Finally, for a large separation s ≫ σ, the QFI can be appro-

ximated as HðsÞ≈2η2N2
sΔk2=½2N2

nþηNsþ2NnðηNsþ1Þ�,

which shows that the noise decreases the QFI for a large
separation as well.
As a remark, we compare the QFI in Eq. (11) with the

one obtained in Ref. [23] where the same type of noise was
studied in the imaging process. The discrepancy of the
expression is present because the noise model of Ref. [23]
assumes that noise occurs only on the modes â�, whereas
our noise model assumes the same amount of noise on b̂�
modes. Nevertheless, the previous result has also revealed
that the QFI vanishes as s → 0 because the rank of the
quantum state does not change around s ¼ 0 in the first
order of s even if we assume Nn ¼ 0 for b̂� modes.
Noisy detectors.—As pointed out in Ref. [23], analyzing

QFI might not be appropriate for considering the effect of
dark counts because QFI is a measurement-independent
quantity while dark counts are a feature of the measurement
device. To analyze the impact of dark counts, we employ
CFI FðθÞ for an unknown parameter θ, the inverse of which
gives a lower bound of estimation error for a given
measurement apparatus Δ2θ ≥ 1=MFðθÞ [39–42]. By
introducing the following proposition, we show that exci-
tation noise on detectors makes the CFI vanish.
Proposition 2.—Consider a quantum state that satisfies

∂θρ̂ ≈ θσ̂ for small θ with a Hermitian operator σ̂ and a
positive-operator-valued measurement (POVM) fΠ̂kgk∈K
satisfying Π̂k ≥ 0,

P
k∈K Π̂k ¼ 1. Here, K is an index set of

measurement outcomes. If the support of the probability
distribution pk ¼ Tr½ρ̂ðθÞΠ̂k�, fk ∈ Kjpk > 0g does not
change as θ → 0, the CFI converges to zero as θ → 0.
Proof.—Recall that the CFI of probability distribution

fpkg is given by [39–42]

FðθÞ ¼
X
pk>0

1

pk

�∂pk

∂θ
�

2

: ð16Þ

The probability of obtaining outcome k by measuring a
quantum state ρ̂ðθÞ with POVM fΠ̂kgk∈K and its derivative
with respect to θ are given by

pk ¼ Tr½Π̂kρ̂ðθÞ� and
∂pk

∂θ ≈ θTr½Π̂kσ̂�: ð17Þ

Therefore, the CFI of small θ is written as

FðθÞ ¼
X
pk>0

1

pk

�∂pk

∂θ
�

2

≈ θ2
X
pk>0

1

pk
ðTr½Π̂kσ̂�Þ2: ð18Þ

Similar to the QFI, the CFI converges to zero as θ → 0
unless there exists pk such that pk → 0 [30].
Similarly to Proposition 2, the signal from the meas-

urement approaches zero for θ → 0, indicated by
∂θpk ∝ Tr½Π̂kσ̂�, while the noise ratio remains finite.
Therefore, the SNR vanishes for small θ, which leads to
a vanishing QFI. The proposition provides a necessary
condition to prevent the CFI of a measurement setting from
vanishing for a small separation s. For example, dark
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counts are a kind of excitation noise on detectors that cause
false excitations on all relevant detectors. Dark count rates
are generally nonzero in all relevant detectors in practice;
thus, the support of the probability distribution does not
change, and it is natural to expect that the CFI of separation
s vanishes FðsÞ → 0 as s → 0 in experiment. Moreover, the
proposition can be applied to measurement crosstalk, which
may arise for the fin-SPADE scheme [22]. It makes all
measurement outcomes mixed so that eventually the
probability of obtaining each outcome becomes nonzero.
Also, the proposition shows the limitation of direct
imaging, homodyne detection, and heterodyne detection
[43], which always give a nonzero probability for each
outcome for generic PSFs, even in the noiseless case. As a
final remark, Proposition 2 does not imply the failure of
superresolution; it suggests that excitation noise on detec-
tors can pose a limit on the resolution, as for QFI in the
previous section.
Finite spatial mode demultiplexing.—Finally, we analyze

an achievable resolution using the fin-SPADE measurement.
In the noiseless case, the fin-SPADE scheme employs a
photon counting for each Hermite-Gaussian mode hqðxÞ on
the image plane, which is optimal if enough Hermite-
Gaussian modes are accessible in experiment [3,5]. In
general, the analytical expression of the CFI of the fin-
SPADE scheme is difficult to obtain due to the statistical
correlations between different modes of the measurement.
We thus obtain the lower bound of the CFI using an
inequality FðθÞ ≥ _μ⃗TC−1 _μ⃗, where μ⃗ and C denote the mean
and covariance matrix of the outcome distribution, and _μ⃗≡
∂sμ⃗ [44]. We provide more details on the CFI and the
numerical method in Ref. [24] We consider a finite number
of Hermite-Gaussian modes hq with 0 ≤ q ≤ Q − 1 with
Q ¼ 15 in the presence of thermal noise in the problem of
resolving two incoherent thermal sources. We confirmed that
increasing Q larger than 15 does not change the CFI for
10−3 ≤ s=σ ≤ 1. Figure 2 shows the ratio of the lower bound
of the CFI of fin-SPADE to the QFI [24]. It clearly shows

that for a large number of signal photons ηNs, the ratio
converges to the unity, which indicates that the fin-SPADE
measurement is optimal in that regime. Even when ηNs is
small, the lower bound of the CFI gives at least 65% of the
QFI. Hence, the fin-SPADE method’s performance is not
degraded significantly by thermal noise compared to the
QFI. A particular way to improve this further is to directly
measure the incoming photon numbers onto the symmetric
and antisymmetric modes and their derivative modes
fâ�; b̂�g [24]. In general, the implementation of such a
measurement requires a priori information, which might be
overcome by using the adaptive method [45].
Conclusions and discussion.—In this Letter, we have

investigated the effect of noise on the resolution of two
identical sources with an arbitrary state using quantum and
classical Fisher information and shown that the Fisher
information converges to zero if the system suffers from
false excitation noise such as thermal noise or dark counts.
We have shown that in the problem of resolving two
incoherent thermal sources with the number of signal
photons being larger than that of noise photons, a
signal-to-noise ratio poses a fundamental limit. Finally,
we have shown that the finite spatial demultiplexing
measurement is nearly optimal for a large signal-to-
noise ratio.
Throughout the Letter, we are assuming that two objects

are identical. Thus, the same conclusion might not hold if
the sources are not identical [46–49]. It would be interest-
ing to analyze the problem of resolving nonidentical
sources.
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