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Disordered hyperuniformity is a description of hidden correlations in point distributions revealed by an
anomalous suppression in fluctuations of local density at various coarse-graining length scales. In the
absorbing phase of models exhibiting an active-absorbing state transition, this suppression extends up to a
hyperuniform length scale that diverges at the critical point. Here, we demonstrate the existence of
additional many-body correlations beyond hyperuniformity. These correlations are hidden in the higher
moments of the probability distribution of the local density and extend up to a longer length scale with a
faster divergence than the hyperuniform length on approaching the critical point. Our results suggest that a
hidden order beyond hyperuniformity may generically be present in complex disordered systems.
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The behavior of long-wavelength density fluctuations and
their anomalous suppression—hyperuniformity [1,2]—
have been the subject of recent interest in the study of
disordered systems for they provide an avenue to probe
long-range order in problems that do not possess transla-
tional or bond-orientational symmetry [3–9]. At the same
time, hyperuniformity is also emergent in a diversevariety of
naturally occurring or model systems that range from
granular or colloidal materials [4,5,10–13] to soft biological
tissues [14–16]. This has led to speculations on its univer-
sality [3,6] and the need for greater understanding of its
causal role in the organization and structure of complex
systems.
For a given configuration of points r⃗i in d-dimensional

space with the global number density ρ, the local density
ρR ≡ ð1=RdÞPr⃗j∈Ω δðr⃗i − r⃗jÞ, defined over a subspace
region Ω of some finite length scale R, is a coarse-grained
variable characterized by a discrete probability distribution
PðρRÞ. In the scenario where r⃗i is generated randomly by an
underlying Poisson point process, the ρR of disconnected
regions in real space are uncorrelated such that PðρRÞ is
constrained by the central limit theorem (CLT) and its
variance scales as σ2ðRÞ ∼ R−d in the limit of R → ∞.
Hyperuniformity is the characterization of density fluctua-
tions σ2ðRÞ ∼ R−a that are anomalously suppressed (a > d)
even in the thermodynamic limit due to the presence of
peculiar correlations in physical density fields. For systems
that are not (ideally) hyperuniform, σ2ðRÞ is instead sup-
pressed up to a finite length scale, ξh [5,8,15], which
we refer to hereafter as the hyperuniform length scale.
Hyperuniformity analyses, therefore, typically focus on

characterizing pairwise correlation through σ2ðRÞ and its
Fourier equivalent, the structure factor SðkÞ [1,2].
However, the analysis of the density field through the

mere investigation of σ2ðRÞ is unable to uncover the
presence of additional higher-ordered correlations hidden
in the higher moments [17] of the probability distribution
PðρRÞ. These correlations are especially relevant at inter-
mediate length scales where crucial information of the
phase behavior on the approach to a critical point may often
be present [6,11,18,19].
In this Letter, we show that additional many-body

correlations are indeed generically hidden in the PðρRÞ
of absorbing states in the conserved lattice gas (CLG)
[20–22] and random organization (RO) [23] models. These
models undergo an active-absorbing state transition at a
critical density ρc. In the high density active phase, the
fraction of particles deemed active scales as jρ − ρcjβ, while
dynamical correlations extend up to a length scaling as
jρ − ρcj−ν⊥ . At lower densities, these systems evolve
toward an absorbing state where there are no active
particles at long but finite times.
These models have been suggested to exhibit a hyper-

uniformity crossover at the critical point [6], where density
fluctuations that were suppressed in the absorbing phase up
to a length scale ξh ∝ jρc − ρj−ν⊥ diverge. Here, we first
demonstrate that density fluctuations in the absorbing
phase are in fact only suppressed up to a length scale
ξh ∝ jρc − ρj−νh , with νh < ν⊥. Furthermore, through the
investigation of the higher moments of PðρRÞ and real
space analyses, we then demonstrate the existence of
additional many-body correlations beyond hyperuniformity
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that extend up to a length scale ξρR ∝ jρc − ρj−ν⊥ > ξh. The
existence of additional correlations that are not captured by
fluctuations in density fields uncovers the presence of a
new form of hidden correlations beyond hyperuniformity
that may prove to be generically present in complex
disordered systems, e.g., dynamical heterogeneities [24]
that are generically present in systems exhibiting glassy
dynamics.
In the CLGmodel, particles are placed initially at random

on an L × L square lattice with mean density ρ≡ N=L2. A
particle is deemed active if one or more of its immediate
neighboring sites is occupied, and active particles with at
least one adjacent empty site move in parallel in each time
step, randomly, to an adjacent unoccupied site such that the
global density ρ of the system is conserved throughout its
dynamics [6,20–22]. This process mimics short range
repulsion in conserved systems. In the RO model [23], N
disks of diameter d ¼ 1 occupy a square simulation domain
of side length L at volume fraction ϕ ¼ ρπðd=2Þ2 where
overlapping disks are deemed active. At each time step,
active disks move by uncorrelated displacements of random
orientation and magnitude that are uniformly distributed
across the range ½0; δ�, inwhich δ ¼ 0.5 is considered for this
Letter. This RO model is inspired by recent experimental
investigations into colloidal suspensions under oscillatory
shear [25,26] that have recently been suggested to be
hyperuniform at their active-absorbing transition [12].
For the CLG model, numerical results presented in

the entirety of this work are for systems of linear size
L ¼ 8192, if not otherwise stated, and ≈15 × 106 particles.
These systems are up to 2 orders of magnitude larger than
what has been previously considered in the literature. For
the RO model, we consider system sizes of typically
N ¼ 8192 × 103 disks, which again is well above what
has been previously considered in the literature. Such large
systems are needed due to the strong influence of size
effects on the moments of PðρRÞ. All data are averaged over
at least 50 independent runs.
In the absorbing phase, we observe a suppression of the

density fluctuations, with σ2ðRÞ ∼ R−λ and λ ¼ 2.45 found
to be universal across the broader class of two-dimensional
random organization models [6]. This suppression extends
up to the hyperuniformity length scale ξh ∝ Δρ−νh diverg-
ing at the critical point, where the scaled fluctuations
R2σ2ðRÞ reach their minimum value. Departing from
previous suggestions that νh ≃ ν⊥ ≃ 0.8 [6], we find instead
that νh ≃ 0.6, which in combination with λ ≃ 2.45, allows
for a collapse of the scaled density fluctuation up to the
hyperuniformity length scale, as we show in Figs. 1(a) and
1(b). We detail the evaluation of νh and of other critical
exponents, alongside corresponding information on the pair
correlation and structure factor, in the Supplementary
Material (SM) [27].
Now, the nonmonotonic behavior of the scaled density

fluctuations, which themselves do not scale collapse for

R > ξh, is opposed to the behavior observed in fluctuation
suppressed states in models of cell tissues [15], and this
suggests the presence of additional correlations in the
density field at length scales larger that ξh. Therefore,
we expect PðρRÞ to not be Gaussian at fluctuation sup-
pressed length scales but to become Gaussian at much
larger lengths. Indeed, we observe in Fig. 2 a non-Gaussian
profile for PðρRÞ at the hyperuniform length scale (R ¼ ξh),
where a distinctive exponential tail in the low density
regime persists that can be approximately described by a
universal function,

PðρRÞ ∝ exp
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FIG. 1. (a),(d), fluctuations σ2; (b),(e), skewness γ; (c),(f),
excess kurtosis κex of the coarse-grained density distribution
PðρRÞ as a function of the coarse-grained length scale R.
Panels (a)–(c) and (d)–(f) show results for the CLG and RO
models, respectively, for different densities and volume fractions.
For the CLG model, the data consist of systems with linear size
L ¼ 8192, while for the RO model, the number of particles,
N ¼ 8192 × 103, is considered. Panels (c) and (d) investigate size
effects for the largest densities considered in the respective
models. Reducing the linear size by a factor of 2 does not affect
our results, while a factor of 4 reduction leads to considerable
size effects.
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where A and B are universal, model independent
parameters.
To investigate the approach to the Gaussian limit,

we focus on the R dependence of the skewness γ≡
h½ðρR−ρÞ=σ�3i and excess kurtosis κex≡h½ðρR−ρÞ=σ�4i−3.
We observe that γ and κex have a nonmonotonic depend-
ence on the coarse-grained length scale and exhibit,
respectively, a minimum and maximum at a length diverg-
ing with exponent ≃0.715 [27]. The extreme values of γ
and κex diverge on approaching the transition, with model
independent exponents, as illustrated by the scale collapse
of Fig. 1.
To demonstrate that these results are not affected by size

effects, we compare, for the CLGmodel, data for L ¼ 8192
with results for L ¼ 4096 and L ¼ 2048 at the highest of
densities considered, focusing on the kurtosis and regimes
where finite size effects are maximal. Figure 1(c) illustrates
the good agreement between L ¼ 8192 and L ¼ 4096,
indicating that our results for L ¼ 8192 are not affected by
size effects. Conversely, significant deviations are apparent
for L ¼ 2048. The different νh reported in Ref. [6], which
derived results from L ¼ 1000, may thus be due to finite
size effects. Similarly, for the RO model, we find an
analogous scenario where results from N ¼ 8192 × 103

agree with what is obtained from N ¼ 2048 × 103 at the
largest considered value of ϕ [Fig. 1(d)]. Hence, size effects
only become apparent in systems significantly smaller than
the respective largest system sizes of both models that are
considered in this Letter.
These results indicate that a sufficiently large system

(L ≫ ξh) can be seen as a tessellation of domains of linear
size ξh and density ρR distributed in accordance to
Eq. (1), within which density fluctuations are suppressed.
Furthermore, the behavior of PðρRÞ under coarse graining
indicates that the coarse-grained density of these domains
is spatially correlated, suggesting a hierarchy of self-
organization present at different scales. To visualize this,
we illustrate in Fig. 2(c) a map of the coarse-grained density
distribution in a spatial region that spans 100ξh ≃ 4200 for
a system of size L ¼ 8192 at ρ ¼ 0.238 of the CLG model.
The observed patches confirm the existence of correlations
beyond ξh. We also note that, in Fig. 1(f), size effects are
seen at ρ ¼ 0.2385 in a system with L ¼ 2048 ≃ 34ξh,
indirectly proving the existence of density correlations
extending well beyond ξh.
To quantify these additional correlations, we investigate

the correlation function of the coarse-grained density
CρRðrÞ ∝ hρRðrÞρRð0Þi − hρRi2, at R ¼ ξh. We discuss in
Fig. S3 in the SM [27] the dependence of CρRðrÞ on R.
Figure 2(d) shows that, for the CLG model, this correlation
function decays exponentially, CρRðrÞ ∝ expðr=ξρRÞ, after a
sharp decline at short length scales. Data corresponding to
different densities do not collapse when plotted against
r=ξh, proving that these observed spatial correlations are a
complementary indication of a hidden additional correla-
tion beyond hyperuniformity. Indeed, we observe in Fig. 3
that, while ξh diverges with the exponent νh ≃ 0.6, ξρR
diverges with the exponent νρR ≃ 0.8. We stress that the
radial correlation function, which we illustrate in Fig. S5 in
the SM [27], does not reveal these additional correlations,
which implies that they are therefore many-body in nature.
These correlations are instead apparent in the two-body
correlation function of the coarse-grained quantity, CρRðrÞ,
as they are encoded in ρR, the probability of finding a
region of linear size R that contains N particles.
Noticing that νρR ≃ ν⊥, we investigate the physical origin

of this novel length scale, focusing on the dynamical
process leading to the absorbing states. Specifically, we
study the coarse-grained freezing time tf [28], which is
defined as the final time at which a particle transitions from
an active to passive state. Maps of the coarse-grained
freezing time, as illustrated in Fig. 3(b) for the CLG model
at ρ ¼ 0.238, reveal the presence of extended correlations,
which we quantify by investigating the correlation function
CtfðrÞ ∝ htfð0ÞtfðrÞi − htfi2. Figure 3(c) shows that the
CtfðrÞ of different densities do not collapse when plotted
against r=ξh, indicating that these correlations are also
not set by the hyperuniformity length scale. Instead,
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FIG. 2. Scaling of the probability distribution of the coarse-
grained density ρR¼ξh, for (a) CLG and (b) RO models, with
ΔρR ¼ ρR − ρ. Black line represents Eq. (1) with A ¼ 0.4 and
B ¼ 0.7 in both panels. (c) Real space map of ρR with R ¼
ξh ≃ 44 for CLG model at ρ ¼ 0.238. (d) Correlation function of
ρR¼ξh decays exponentially after an initial precipitous drop that
occurs at short distances R ≤ ξ. We extract the decay length ξρR
via exponential fits, limited to R < 15ξh, represented by the solid
lines. In (a), (b), and (d), symbols indicate the various densities ρ
as labeled in Fig. 1.
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we collapse the correlation function in Fig. 3(d) by plotting
them against r=ξtf , where the freezing time correlation
length scale is defined by CtfðξtfÞ ¼ e−1. The length scale
ξtf diverges on approaching the absorbing phase transition
as Δρ−0.8, as we demonstrate in Fig. 3(a), and is therefore
proportional to ξρR . The additional spatial correlations in
the density field beyond hyperuniformity, therefore, reflect
the spatial correlation in the dynamics leading to the
absorbing state.
These results prove that a single length scale controls the

correlation of the coarse-grained density and that of the
freezing time. The correlation between these two quantities,
however, is not immediately apparent by a comparison of
the coarse-grained density of the final configuration of
Fig. 2(c) and that of the coarse-grained freezing time,
Fig. 3(b). To unveil these correlations, we compare the two
maps averaged over 100 runs [29] and sharing the same
initial configurations. These so-called isoconfigurational
averages mitigate the effect of dynamical noise. The
resulting maps, which we show in Figs. 4(a) and 4(b),
are clearly similar, as regions with a low average coarse-
grained density correspond to regions with a low average
coarse-grained freezing time. Plotting these quantities

against one another in a scatter diagram as in Fig. 4(c)
makes their correlation apparent. Importantly, we remark
that these correlations do not originate from fluctuations of
the coarse-grained density in the initial configuration.
Indeed, we show in Fig. 4(d) that the average coarse-grained
freezing time does not correlate with the fluctuations of the
coarse-grained density of the initial configuration.
These observations establish an intriguing analogy

between the behavior of the coarse-grained density distri-
butionPðρRÞ on increasingR and that of the displacement of
the particles of supercooled liquids PðΔrtÞ on increasing the
observation time t. The fluctuations of ρR are suppressed up
to a length scale ξh that diverges at the active-absorbing
phase transition, and the convergence to CLT is recovered
gradually at larger length scales; Similarly, the fluctuations
of Δrt are suppressed up to the relaxation time τ that ideally
diverges at the glass transition, the predictions of CLT being
progressively recovered at longer timescales. In the CLG and
RO models, κex peaks at lengths that scale diverging at the
transition, where the peak height also diverges. Likewise, in
supercooled liquids, κex peaks at a time scaling with τ, and
its peak value diverges at the transition [30]. Furthermore,
the heterogeneities of the coarse-grained density at R ¼ ξh
observed in RO models, Fig 2(c), reflect that of the
displacements of the particles at the relaxation time in
supercooled liquids [24]. Finally, in both cases, the corre-
lations between these spatial heterogeneities and the initial
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configuration of the system are revealed via isoconfigura-
tional averages [29]. The systems only differ in their skew-
ness where γ ¼ 0 in liquids as a consequence of the
invariance of the equation of motion under time reversal.
In this Letter, we established the existence of hidden

many-body correlations, beyond what is captured by the
suppression of density fluctuations, in two-dimensional
models exhibiting an active-absorbing phase transition.
Qualitatively, the scenario here discussed appears to also
hold in three dimensions [27]. Specifically, density fluc-
tuations are suppressed up to a length scale that diverges at
the transition with the exponent νh ≃ 0.6, while conversely,
many-body density correlations extend up to a longer
length scale that diverges with the exponent ν⊥ ≃ 0.80.
The presence of similar findings beyond the current context
is an exciting avenue that demands further investigation.
These explorations may, in turn, provide means for further
taxonomy and classification of fluctuation suppressed or
hyperuniform disordered systems. Specifically, we envisage
a parallel with the taxonomy recently introduced for dif-
fusive systems [31,32], where four main classes are iden-
tified based on the behavior of the second (Fickian/non-
Fickian) and higher moments (Gaussian/non-Gaussian) of
the displacement field probability distribution. From this
perspective, the CLG and RO models are considered hyper-
uniform but non-Gaussian systems. Random jammed sphere
packings [33] are (effectively) hyperuniform and Gaussian,
while the Voronoi model for cell tissue [15] and Quantizer
problems [3] are (effectively) hyperuniform and Gaussian.
Seemingly, non-Gaussian behavior appears to occur in
systems exhibiting an absorbing transition while Gaussian
behavior exists in jammed solids. Further work in this
direction is certainly needed. Future investigations may also
consider the possibility of artificially tuning the Gaussian
behavior through local particle displacements [34].
More generally, these analyses based on the higher

moments may provide for additional tools in probing the
possible causal role of hyperuniformity in the self-organi-
zation of disordered systems by further characterizing the
approach to criticality of nonequilibrium phase transitions.
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