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Dense granular flows are well described by several continuum models; however, their internal dynamics
remain elusive. This study explores the contact force distributions in simulated steady and homogenous
shear flows. The results demonstrate the existence of high magnitude contact forces in faster flows with
stiffer grains. A proposed physical mechanism explains this rate-dependent force transmission. This
analysis establishes a relation between contact forces and grain velocities, providing an entry point to unify
a range of continuum models derived from either contact forces or grain velocity.
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Granular flows transmit forces via a network of contacts
between pairs of grains. Knowing the magnitude of these
forces is key to predicting the dynamics of natural and
industrial flows. First, contact forces are an elementary
vector of momentum transport [1]. As such, they control
the effective viscosity of the material. Second, large contact
forces can lead to grain comminution, which in turns affects
the flow microstructure and its rheological behavior [2].
However, while several continuum models can describe
dense granular flows [3,4], the nature and the origin of
their internal contact force distribution remain poorly
understood.
Pioneering works focusing on quasistatic packings

revealed that (i) the mean contact force is controlled by
the confining stress P and the grain size d as Pd2 and
(ii) some contacts are compressed to much higher levels
[5,6]. A piecewise force distribution was manifest, includ-
ing an exponentially decaying probability of finding con-
tact forces with a magnitude above the mean.
Contact forces in collisional flows are radically different

as they arise from binary collisions between grains. In shear
flows, Bagnold’s scaling relates the typical impact velocity
to the shear rate _γ and the grain size d as _γd. Considering a
simple elastoinertial collision between grains of mass m
and contact stiffness k provides an estimate for the
maximum impact contact force of _γd

ffiffiffiffiffiffiffi
km

p
[7]. This high-

lights a rate dependence of the contact forces.
In dense granular flows, binary collisions are seldom

because grains typically experience multiple contacts.
Their trajectories involve inertial reorganization events
whose dynamics is independent on, and much faster than,
the shear rate [3]. As a result, the grains’ relative velocity
deviates from Bagnold’s scaling [8–10]. The resulting
distribution in grain velocity has been shown to control
the process of shear-induced diffusion [11,12]. However,
how and whether it is related to contact forces are unknown.
In this Letter, we seek to establish a physically based

model that captures the force distribution in dense granular

flows. In this aim, we have measured contact force
distribution in simulated steady and homogenous shear
flows and inferred a physical mechanism involving
grain velocity fluctuations that is able to capture these
observations.
Simulations.—We used a discrete element method to

simulate granular flows in a plane shear configuration
[Fig. 1(a)]. This configuration yields homogenous and
steady flows that conveniently exude additional complexity
arising in heterogenous or unsteady flows [13]. The shear
cell is bidimensional. Both the normal stress P and the
shear rate _γ are prescribed using periodic boundary con-
ditions [14] to avoid the flow heterogeneities that solid
walls would induce [15]. The granular material comprises
104 grains of mean diameter d, mass m, and density ρ.
A uniform polydispersity of d� 20% is introduced on the
grain’s diameter to prevent shear-induced crystallization.
Grains interact via pairwise contacts including a normal
elastodissipative force and a tangential friction. The
Supplemental Material further details these granular inter-
actions and the simulation procedure [16]. Contact param-
eters include a coefficient of restitution and a coefficient of
friction, which are both set to 0.5. In contrast, different
values of the contact normal stiffness k will be considered.
The effect of these contact parameters on the granular
rheology is discussed in [9].
The following analysis focuses on steady and homo-

geneous flows obtained with this configuration while
prescribing two dimensionless numbers I and K:

I ¼ _γti; ti ¼ d

ffiffiffiffi
ρ

P

r
; K ¼ t2c

t2i
¼ Pd

k
: ð1Þ

The inertial number I compares the shear time _γ−1 to the
inertial time ti. ti measures a characteristic time for a grain
of mass m initially at rest to move over a distance d under
the action of a force Pd2 [3,9]. The softness number K
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measures the elastic deformation of a grain experiencing a
compressive contact force of magnitude Pd2; equivalently,
it compares the inertial time ti to an elastoinertial collision
time tc ¼ d

ffiffiffiffiffiffiffiffiffiffi
ρd=k

p
. In the following, results cover the

ranges 10−3 ≤ I ≤ 0.9 and 10−5 ≤ K ≤ 10−3, which cor-
respond to the dense flow regime and the rigid limit,
characterized by tc < ti < _γ−1 [3,9].
Phenomenological scaling for force fluctuation.—First,

we measured the component of the contact forces in the

direction transverse to the shear jfyj to determine their
probability density function—the Supplemental Material
shows that both components fx and fy have similar PDFs
[16]. Taking advantage of the homogeneity and steadiness
of the flows, these were measured by considering all grains
in the cell and 300 sampled times spread evenly over 15
shear deformations. Figures 1(b) and 1(c) show that the
force distributions are affected by both the inertial number I
and the softness K. To characterize the width of these
distributions, we measured their standard deviation δf,
which we refer to as force fluctuation. Figure 2 shows the
combined influence of I and K on the normalized force
fluctuation F ¼ δf=Pd2. δf converges to Pd2 in the
quasistatic limit I → 0, which is consistent with the
findings in [5,6]. In contrast, it becomes significantly larger
at high inertial numbers and for stiffer grains: δf reaches
values up to one order of magnitude larger than Pd2 in the
range of parameters that have been explored. However,
these results do not immediately provide evidence for a
relation between δf and the dimensionless numbers I
and K.
To identify this relation, we use the microinertia theory

introduced in [1] that relates contact force fluctuation to
grain acceleration. The rationale for this theory is that
multiple contact forces acting on a grain may be partially
balanced. Their balanced part does not induce any accel-
eration and scales with Pd2. Their unbalanced part drives
some grain acceleration according to Newton’s law of
motion. This ultimately yields a linear relation between
force and acceleration fluctuations δf ≈ Pd2 þmδa. Here,
the acceleration fluctuation is defined as the standard
deviation of the distribution in grain acceleration in the
y direction. A dimensionless formulation of this relation is

F ≈ 1þA; ð2Þ
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FIG. 2. Contact force fluctuations F ¼ δF=Pd2 for
different inertial numbers I (K ¼ 10−3, main) and different
softness K (inset). Symbols, numerical results; and lines,
proposed model [Eq. (4)].
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FIG. 1. Force and velocity distributions. (a) Plane shear
under prescribed pressure P and shear rate _γ, showing a snapshot
of the contact forces (top half; represented by segments of width
proportional to the force magnitude) and of the grain velocities
(bottom half) in a flow with I ¼ 0.01 and K ¼ 10−3. Movies
available in the Supplemental Material [16] show the evolution
of contact forces and grain velocities within flows at different
inertial number and softness. (b),(c) Probability density functions
(PDFs) of grain velocity (left) and contact forces (right)
for different inertial numbers [Fig. 1(b)] and different softness
[Fig. 1(c)].
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where A ¼ δa=ðd=t2i Þ is the normalized acceleration fluc-
tuation. The Supplemental Material [16] shows that this
relation is valid for flows performed at different inertial
numbers I and with different softness K. Thanks to this
relation, establishing how the force fluctuation varies with
I and K may be achieved by finding how the acceleration
fluctuation varies with I and K.
Figure 3 shows that the acceleration fluctuation δa=d_γ2

decreases with a higher inertial number and stiffer grains,
seemingly with a power law:

δa
d_γ2

∝ KnaK InaI : ð3Þ

Results are consistent with exponents naK ¼ −0.25 and
naI ¼ −1.25. Introducing this scaling into the force-
acceleration relation [Eq. (2)] leads to the following
phenomenological scaling law for the force fluctuations:

F ≈ 1þ αK−0.25I0.75: ð4Þ

Figure 2 shows that this relation reasonably captures the
force fluctuation in the explored range of I and K with
α ¼ 2.5 as a fitting parameter.
Physical process relating velocity and force fluctua-

tions.—To identify a physical process at the origin of this
phenomenological law, we now seek to relate the accel-
eration fluctuation to other kinematic quantities including
grain velocities and their time persistence.
Figures 1(b) and 1(c) show that the grain vertical velocity

distribution is affected by the inertial number. However,
unlike contact forces, the velocity distribution is not
dependent on the softness. Figure 3 reports the standard
deviation of these distributions, which we refer to as
velocity fluctuations δv. The results suggest the following
power law:

δv
_γd

≈ 0.5Inv : ð5Þ

As previously proposed [9,11,12], they are consistent with
a power exponent nv ¼ −0.5. They further point out the
negligible influence of the softness K.
Figure 3 also reports the velocity autocorrelation time Ψ,

defined as

Ψ ¼
Z

∞

t¼0

ψðtÞdt;

where

ψðtÞ ¼ hvyðt0Þvyðt0 þ tÞi=hvyðt0Þ2i

is the velocity autocorrelation function, and the angle
brackets denote the average operator on all grains and
all reference times t0. We refer to Ψ as the velocity
persistence time because it measures a characteristic period
of time during which a grain velocity vy is sustained. The
persistence time is related to the coefficient of self-diffusion
D by the Green-Kubo relation D ¼ δv2Ψ [12]. The results
suggest the following power law:

Ψ_γ ≈ 0.35InΨ : ð6Þ

As previously reported [10–12], they are consistent with
a power exponent nΨ ¼ 0.5. They further highlight the
near independence of the velocity memory time on the
softness K.
From these two observations on the velocity fluctuation

and their persistence, we infer a simplified scenario for a
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FIG. 3. Internal kinematic variables: Velocity fluctuation δv,
acceleration fluctuation δa, and velocity memory time Ψ mea-
sured in flows with (a) different inertial numbers K ¼ 10−3

(results for K ¼ 10−4 are shown in the Supplemental Material
[16], confirming the power laws), and (b) different softness K for
I ¼ 10−2 (filled symbols) and I ¼ 10−1 (open symbols). Sym-
bols, numerical results; and lines, proposed models in Eqs. (3),
(5), and (6). Numbers summarize the power-law exponents.
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typical grain motion in dense granular flows. Like a random
walk, this scenario involves grains moving over steps of
length δvΨ at a constant velocity δv before changing
direction. Accordingly, the acceleration during the step is
null. As for collisional flows, we postulate that the
acceleration during the change of direction is of the order
of δv=tc: this reflects a change in grain velocity of �δv in a
period of time driven by the elastoinertial collision time tc.
The characteristic mean square acceleration during such

a cycle is (considering that tc ≪ Ψ)

ha2i ¼ ðcδv=tcÞ2tc þ 0

Ψ
¼ δv2

tcΨ
:

This predicts the following relation between the velocity
fluctuation and the acceleration fluctuation δa≡ ha2i0.5:

δa ∝
δvffiffiffiffiffiffiffi
tcΨ

p : ð7Þ

Introducing this relation into the force-acceleration relation
in Eq. (2) leads to the following relation between the force
and velocity fluctuations:

δf − Pd2 ∝ m
δvffiffiffiffiffiffiffi
tcΨ

p : ð8Þ

Introducing in Eq. (8) the scalings for the velocity fluc-
tuation and their lifetime in Eqs. (5) and (6) leads to the
following scaling law for the force fluctuation expressed in
terms of the inertial number and the softness K:
F − 1 ∝ Kð−1=4ÞIð3=4Þ, which is consistent with the phe-
nomenological model [Eq. (4)]. The Supplemental Material
[16] details this derivation and further assesses the validity
of this scenario by comparing the measured δa and δf to
the predictions of Eqs. (7) and (8), respectively.
Finally, Fig. 4 shows that the distribution of contact

forces collapses onto a single exponential distribution when
rescaled by the force fluctuation defined by Eq. (4). This
distribution is similar to that found in quasistatic packings
[5,6]. Here, we find how its width depends on the inertial
number and grain softness in dense flows. Similarly, Fig. 4
shows that grain velocity distributions all collapse onto a
single normal distribution when rescaled by the velocity
fluctuation modeled by Eq. (5). This further confirms that,
unlike contact forces, grain kinematic is independent on the
softness K.
Conclusions.—This study highlights a significant rate

dependence of contact forces in steady and homogeneous
granular flows. It reveals the existence of forces much
larger than the characteristic scale Pd2 with an exponential
distribution, and it introduces a model [Eq. (4)] to capture
the width of this distribution as a function of the inertial
number and grain softness. These results can be used to

foresee flow conditions likely to lead to grain breakage or
abrasive wear induced by extreme contact forces.
The random-walk mechanism introduced to explain this

rate dependence of the force distribution highlights a
relationship between contact forces and grain velocity
fluctuation [Eq. (8)]. This relationship is an entry point
to help reconcile two distinct existing approaches to
understand the constitutive behavior of dense granular
flows that are based on either contact forces [1,17,18] or
grain velocity fluctuations [19–21]. In particular, establish-
ing the validity—or deviation from—this relation in more
complex geometry including volume-controlled, unsteady,
or nonhomogeneous flows could help interpret the origin of
rheological behaviors such as nonlocality. Finally, we
anticipate that analogous physical processes could govern
the force distribution in other soft materials such as
suspensions, foams, and emulsions, which would involve
each material’s specific mode of interaction working via an
interstitial liquid.
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