PHYSICAL REVIEW LETTERS 126, 118001 (2021)

Morphological Transition between Patterns Formed by Threads of Magnetic Beads
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Magnetic beads attract each other, forming chains. We push such chains into an inclined Hele-Shaw cell
and discover that they spontaneously form self-similar patterns. Depending on the angle of inclination of
the cell, two completely different situations emerge; namely, above the static friction angle the patterns
resemble the stacking of a rope and below they look similar to a fortress from above. Moreover, locally the
first pattern forms a square lattice, while the second pattern exhibits triangular symmetry. For both patterns,
the size distributions of enclosed areas follow power laws. We characterize the morphological transition
between the two patterns experimentally and numerically and explain the change in polarization as a
competition between friction-induced buckling and gravity.
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The folding and crumpling of slender objects like wires
is of increasing interest due to its many applications in
mechanics and biology. A rich spectrum of instabilities and
patterns has been found depending on friction, stiffness,
aspect ratio, and the type of confinement [1-3]. By adding
attractive forces, self-assembling systems like origamis
have been devised [4]. However, much less is known when
the wire has a polarization, as it is the case for a chain of
magnetic particles. In fact, threads of magnetic beads occur
in nature on different scales. They form on nanometric scale
in magnetic colloids [5] and as chains of magnetosomes in
magnetotactic bacteria [6—8]. Here we will consider macro-
scopic metal beads to study two-dimensional folding
patterns by injecting them into a Hele-Shaw cell. The
relative polarization of two chains allows for two funda-
mentally different types of local interactions that lead to
new, completely dissimilar types of macroscopic patterns.
In what follows, we show that the transition from one to the
other can be controlled experimentally by adjusting the
action angle of the gravitational forces on the system.

The injection of wires into cavities has been of interest to
model the coiling of long DNA in globules and viral
capsids [9-12], as well as a minimally invasive treatment of
saccular aneurysms [13]. Fractal filling patterns have been
observed, while the injection force diverges with a power
law [14-17]. Three different filling patterns emerge
depending on friction and the bending elastoplasticity of
the wire: a spiral phase, folding phase, and chaotic phase
[1,18]. Also, deformable cavities have been considered
[19,20]. In this Letter, we replace the wire by a chain of
magnetic beads and the cavity by a Hele-Shaw cell.
Magnetic hard spheres generate self-assembled patterns
in the microscopic scale [21-23], mesoscopic scale
[24-27], and macroscopic scale [28-30]. The anisotropy
of the magnetic forces induces different orientations in the

0031-9007/21/126(11)/118001(5)

118001-1

interaction between sections of the chain, resulting in the
self-assembly of novel types of patterns, which we realize
here experimentally and numerically.

The experiments were performed with magnetized neo-
dymium beads of d = 5 mm diameter. As shown in Fig. 1,
the Hele-Shaw cell consisted of a black plate covered with a
transparent acrylic disk separated by a flat acrylic cylindric
ring of 6 mm height and radius R. The cell could be
inclined by an angle 6. A step motor controlled a quasistatic
injection at 0.43 mm/s into a hole in the middle of the
black bottom plate. Images were recorded with a digital
Canon PowerShot SX510 HS camera with 30 frames/s at
27 cm above the cavity and used to determine the particle
positions through image segmentation.

With aligned dipole moments, the magnetic beads
naturally assemble into chains that exhibit macroscopically

FIG. 1. Schematic setup of the experiment. The chain of
magnetic beads is pushed from below into a Hele-Shaw cell
with a transparent top plate inclined by 6 deg. The acrylic
cylindric ring of radius R separates the two plates.
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elastoplastic bending stiffness [31,32]. We injected such
chains of beads into the cavity from the bottom into the cell.
When they enter the cell, the spheres in the chain and their
magnetic moments undergo rotations, which weakens the
forces in the direction of the chain between the beads close
to the entrance. Eventually, either by hitting the wall of the
cell or due to the friction with the bottom plate, the chain
slows down and starts buckling. It then forms loops that get
closer and closer to the injection hole, until the region close
to the hole is jammed and no more particles can be inserted.
At this point, the motor is stopped and the resulting pattern
is analyzed.

In Fig. 2 we show four of such patterns obtained for two
different angles, & = 0° and 90°, and cell radii, R = 20d
and 40d. For 0 = 0° [see Figs. 2(a) and 2(c)], we observe
the formation of polygonal shaped patterns which look like
fortresses viewed from above. In the particular case of
Fig. 2(a), due to the larger size of the cell (R = 40d), the
chain never reaches the walls, but buckles before, stopping
due to friction with the bottom plate. When the experiment
is performed in a smaller cell (R = 20d), as shown in
Fig. 2(c), the chain eventually hits the walls of the cell and
then buckles, leading to the polygonal structure. In the case
of @ = 90° [see Figs. 2(b) and 2(d)], the structure resembles
the stacking of a rope, which we will thus call stacked
patterns (see videos in the Supplemental Material [33]).

In polygonal patterns, chain pieces having the same
dipolar orientation attract each other, forming stripes that
locally exhibit triangular symmetry. These stripes sponta-
neously bend, forming pronounced corners of around 120°,
as shown in Fig. 3. In stacked patterns, on the other hand,
chain pieces having opposite dipolar orientation attract
each other, forming domains that locally exhibit square
symmetry (see schematic illustrations in Fig. S1 of the
Supplemental Material [33]).
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The reason why equally oriented chains form triangles,
while chains of opposite orientation end up in squares, can
be found by searching for the configurations of lowest
magnetic energy E. This is obtained by summing over all
pairs of beads in the pattern according to

N-1 N
E=->"> mB; (1)
i=1 j=i+1

where m; is the dipole moment of particle i, N is the total
number of particles, and B; is the magnetic dipole field of
particle j at the position of particle i given by

I An r; '

with r;; being the vector pointing from the center of particle
i to the center of particle j, #;; = r;;/|r;;|, and pq is the
vacuum permeability. We performed Monte Carlo simu-
lations of two parallel chains of magnetic dipoles using
Eq. (1) as energy in the Boltzmann factor and found that,
after decreasing the temperature, the energetically most
favorable configurations for parallel (antiparallel) orienta-
tions of the chains were indeed the triangular (square)
configurations with all dipoles oriented in parallel along the
direction of the chains.

All patterns self-assemble into scale-free structures. For
instance, this can be seen from the areas enclosed by loops,
as shown in Figs. 4(a) and 4(c). Clearly there are areas of all
sizes. To calculate the areas, we first transform the RGB
images into black-white images. The analysis is performed
using the dimensionless area A}, = A, /A, where A, is the
area of the hole and Ay = z(d/2)? is the area of the
projection of one sphere, both measured in pixels. Typical
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FIG. 2. Patterns obtained after no more beads can be injected anymore into the cell for (a) R = 40d and € = 0°, (b) R = 40d and
60 =90° (c) R = 20d and 8 = 0°. (d) Two chains are injected into the cell from opposite sides, as indicated by black arrows, with § = 0°.
(a),(c) We see polygonal patterns and for (b) and (d) stacked ones. The insets in (a) and (b) highlight the two patterns, polygonal and
stacked ones, respectively. The color code indicates the number of nearest neighbors of each particle, i.e., having a distance of less than
10% of their diameter. We see that in polygonal patterns locally most particles have six neighbors, producing thus a triangular lattice,
while in stacked patterns four nearest neighbors prevail, yielding a square lattice. Only in (a) the chains never hit the wall of the cell. The
black points in (a)—(c) indicate the injection point.
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FIG. 3. The polygonal pattern is formed by stripes of paired
chains with a locally triangular arrangement. These stripes
spontaneously create corners forming angles of around 120°,
as shown in (a) and enlarged in (b).

examples of such two-dimensional disjointed domains are
shown in Figs. 4(a) and 4(c), obtained from the patterns in
Figs. 2(b) and 2(c), respectively. The distributions of areas
shown in Figs. 4(b) and 4(d) were obtained from the
average over 15 injection experiments each, performed
with inclination angles & = 0° and 90°, respectively. As
depicted, for areas that have at least ten pixels, both
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FIG. 4. The areas enclosed by the loops within the chain of
magnetic particles are shown in blue for two typical injection
experiments, resulting in (a) a stacked pattern and (c) a polygonal
pattern. The dimensionless area A; = A, /A is calculated from
black and white images, where A, is the area of the hole measured
in pixels and Ay = 7(d/2)?. The area distributions are shown in
(b) stacked and (d) polygonal patterns, calculated from the
average over 15 experimental realizations in each case. The blue
solid lines are the least-squares fit to the datasets of a power law,
P(A}) x A7, calculated for areas with more than ten pixels,
with exponents y = 2.31 £ 0.03 and 0.85 4 0.03 for (b) and (d),
respectively.

distributions follow power-law behaviors, P(A}) « A;77,
with exponents y = 2.31 £ 0.03 for the stacked pattern
(@ =0° and y = 0.85+0.03 for the polygonal pattern
(@ =90°).

By increasing the inclination angle € of the cell, we
observe a transition from the polygonal to the stacked
pattern. A convenient order parameter to characterize this
transition is the percentage ¢ of particles that have six
neighbors. In Fig. 5, we plot ¢4 as a function of 6 for
R = 40d and 20d and see that below a critical angle 6. =
19.4° £ 0.4 the order parameter ¢ is finite and above it is
zero. The change at 6, is abrupt, as it is the case for first-
order transitions, which is typically expected for morpho-
logical phase transitions. This sharp transition is also
observed in the presence of finite-size effects, i.e., when
the chain hits the wall of the cell for R = 20d. The inset of
Fig. 5 shows that the average fractions ¢ of particles in the
chain having a certain number of neighbors n (2 < n < 6)
change dramatically from 6 = 0° to @ = 90°.

In Fig. 6 we show how the number N of particles that can
be injected into the cell before the chain gets stuck depends
on the inclination angle 6. For R =40d, the size of
polygonal patterns, i.e., below 6., changes with 0, while
for stacked patterns, i.e., above 0., the size is independent
of 0. If R is too small (R = 20d), the chain hits the wall of
the cell and then the patterns can not attain their full size,
with N becoming substantially smaller, as depicted
in Fig. 6.

In order to measure the friction, we formed a triangle of
three particles and let it slide down on the bottom plate.
This triangular arrangement allowed suppression of any
rolling. Interestingly, the inclination angle at which the
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FIG. 5. Order parameter ¢ of the morphological phase

transition as a function of the inclination angle 0 for R = 40d
(circles) and R = 20d (stars). ¢bg is defined as the average fraction
of particles that have six neighbors. One clearly observes an
abrupt jump near the critical point 8, = 19.4°, being the signature
of a first-order transition. The inset shows how the average
fractions ¢ of particles in the chain with n neighbors change
going from 6 = 0° to 6 = 90°, both for R = 40d.
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FIG. 6. Number N of particles in the pattern as a function of the
inclination angle 6 of the cell for R = 40d (circles) and R = 20d
(stars). The vertical dashed green line at 8, = 19.4° corresponds
to the static friction angle of the particles with the bottom plate,
measured by letting three particles forming a triangle slide
down on the plate in order to avoid rolling. The relationship
between the critical angle and the static friction coefficient is
u, = tan(6,) ~ 0.35. Above 0., the number of particles N
becomes independent of @, but depends on the radius R of the
cell. Inset: simulated patterns for & = 0° without (upper) and with
(bottom) weakening of the dipolar forces at the entry of the chain.

triangle starts to slide down, i.e., the static friction angle,
turns out to be 19.4° £ 0.4, agreeing perfectly with 6... This
seems to indicate that the phase transition is triggered by
the sliding of the chain; that is, above (below) the static
friction angle, the chain will (not) slide, therefore produc-
ing stacking (polygonal) patterns.

Instead of pushing the chains of magnetic particles into
the Hele-Shaw through a hole in the center, we also injected
them into the cell from its boundary. Surprisingly, in this
case it is impossible to create polygonal patterns, i.e.,
always only stacked patterns appear. An example for 8 =
0° in which two chains are simultaneously injected from
opposite sides is shown in Fig. 2(d).

In order to understand this last experimental observation
and get deeper insight into the mechanism producing the
observed patterns, we also performed discrete element
model simulations [34] using a fourth-order Runge-Kutta
algorithm for integration and rotations [35]. The contact
forces are written as

U

l?j = Fnﬁij + FS’ (3)
where F,7i;; and F , represent the normal and shear forces
between contacting spherical beads. The normal force is
given by F,, = k,u,, where k, is the normal stiffness and u,,
is the contact overlap. The shear forces are computed
incrementally by AF; = —k,A¥;;, where k, is the shear
stiffness and Ar;; is the relative shear displacement vector.

Friction between particles is_implemented in a similar
fashion. The magnetic force F' ZI and torque %'%’ between
particles i and j are assumed to be due to point-
like magnetic dipoles at the centers of the beads and

computed as

Fij = V(i - B)) (4)
and

™ = i, x B;, (5)

where m; is the dipole moment of particle i and B ; 1s the
magnetic dipole field of particle j at the position of particle
i, as defined in Eq. (2). The magnitude of the magnetic
dipoles defines the bending stiffness of the chain.

In our simulation, we inserted chains of magnetic
particles quasistatically either from the center or from
one point at the boundary of the cell and always stacked
patterns were formed independently of the choice of
parameters, as shown in Fig. 6 (upper inset). Only after
weakening systematically the magnetic dipole force
between the last two beads that just entered the cell by
at least a factor of 2, we could reproduce the polygonal
pattern, as shown in Fig. 6 (bottom inset). In fact, when
particles are injected through a hole in the center of the cell,
a rotation of 90° is imposed on them, which locally
weakens their magnetic forces. This weakening has a
dramatic consequence on the evolution of the pattern
(see the videos in the Supplemental Material [33]). After
the chain has stopped, either due to friction or after hitting a
wall, it buckles in one direction. If no weakening is
imposed at the entry, after some time the bending stiffness
of the chain will, however, force it to flip back, inducing an
oscillatory behavior and forming stacking patterns. Only if
at the entry the dipoles are sufficiently weakened, can the
chain bend enough to allow it to continue turning in the
same direction, forming, for adequately chosen parameters,
the polygonal patterns.

Here we reported new patterns that appear while feeding
a chain of magnetic beads into the center of a Hele-Shaw
cell. We discovered that, depending on the inclination of
the cell, i.e., the effect of gravity, two completely different
types of scale-free patterns self-assemble. The first-order
phase transition between the two patterns occurs at the
static friction angle. Crucial for obtaining the polygonal
pattern is the weakening of the dipolar forces at the entry
into the cell, due to the redirection of the chain by 90°. The
subtle effects encountered at the injection point discovered
here, which dictates the way the magnetic chain deforms
into the cell, might become relevant in the manipulation of
magnetic colloids [36], chains of magnetosomes [37,38],
and soft micromachines based on dipole-dipole interactions
[39]. It would be interesting to include in the future electric,
entropic, van der Waals, and other forces. It would also be
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important to study patterns formed by interacting chains
filling three-dimensional cavities and investigate the effect
of the magnetic dipoles and friction on those patterns.
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