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The microscopic origin of mechanical enhancement in polymer nanocomposite (PNC) melts is
investigated through the combination of rheology and small-angle neutron scattering. It is shown that
in the absence of an extensive particle network, the molecular deformation of polymer chains dominates the
stress response on intermediate time scales. Quantitative analyses of small-angle neutron scattering spectra,
however, reveal no enhanced structural anisotropy in the PNCs, compared with the pristine polymers under
the same deformation conditions. These results demonstrate that the mechanical reinforcement of PNCs is
not due to molecular overstraining, but instead a redistribution of strain field in the polymer matrix, akin to
the classical picture of hydrodynamic effect of nanoparticles.
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Incorporation of nanoparticles (NPs) into a polymer
matrix can significantly improve the mechanical perfor-
mance of the resulting polymer nanocomposites (PNCs)
[1–4]. Despite the wide recognition of the reinforcement
effect of NPs, the molecular origin of this phenomenon
remains largely elusive [5–8]. Inspired by Einstein’s
insights on the hydrodynamic effect [9,10], Smallwood
demonstrated that the modulus of the filled rubber is
enhanced in a similar manner as the viscosity of dilute
suspensions of particles, where the particle alters the strain
distribution of its surrounding medium [11,12]. While the
Einstein-Smallwood relation describes well the mechanical
enhancement of PNCs at dilute conditions, the theory of
hydrodynamic reinforcement at high concentrations has not
been fully established [13], particularly in the nonlinear
rheological regime. Moreover, despite the critical insight
offered by the hydrodynamic theory on the mechanical
reinforcement of PNCs, the fundamental question of how
the NPs affect the deformation of the matrix polymer and
why the presence of NPs can lead to the high mechanical
strength of PNCs are still under active debate. For instance,
Mullins attributed the high mechanical stiffness of filled
rubbers to larger effective deformation of the matrix
polymer relative to the unfilled state, invoking the concept
of strain amplification or molecular overstraining [14].
Although the concept of strain amplification is widely
employed by the PNC community [7,15–18], microscopic
experiments regarding its existence have been inconclusive
and controversial. On the one hand, an early small-angle
neutron scattering (SANS) [16] and a more recent proton

nuclear magnetic resonance spectroscopy measurements
[17] showed signs of strain amplification in rubber com-
posites; on the other hand, recent SANS experiments
[19,20] claimed no evidence of molecular overstraining
in rubber/silica and polystyrene/silica nanocomposites, and
nanoparticle-nanoparticle interaction was offered as the
explanation for mechanical reinforcement in the melt state.
Because of these seemingly conflicting results, our current
understanding about the microscopic consequence of
hydrodynamic reinforcement is still murky and incomplete.
Motivated by this challenge, we set out to examine the

length scale–dependent structural anisotropy of deformed
polymer nanocomposites and reveal the molecular origin of
mechanical reinforcement through a combination of small-
angle neutron scattering and rheology. Unlike the previous
SANS studies on this subject [16,20–23], the current work
applies spherical harmonic expansion (SHE) analysis
[24–26] to accurately quantify the anisotropic structure of
the polymer matrix across a wide range of length scales.
Additionally, the combination of SANS and rheology allows
a clear evaluation of the stress contributions from different
components, in contrast to the previous investigations, where
only a single technique was employed. Most importantly,
our results show unambiguously a lack of molecular over-
straining of the polymer matrix at all length scales, ruling out
strain amplification of the bulk polymer as the mechanism
for mechanical reinforcement in PNCs.
Poly(methyl methacrylate) (PMMA) with 8 vol% 8-nm-

radius silica nanoparticles serves as a model system in this
study. To probe the molecular deformation of the
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polymer matrix with small-angle neutron scattering, deu-
terated (D8-PMMA, Mw ¼ 217 kg=mol, PDI ¼ 1.27) and
hydrogenous PMMAs (H8-PMMA, Mw¼194 kg=mol,
PDI¼1.08) are mixed at an a molar ratio of hydrogen/
deuterium of 0.59∶0.41 to match the scattering length
density of the SiO2 nanoparticles. The leveling off of the
scattering intensity at lowQ (Q < 0.006 Å−1) in the small-
angle x-ray scattering (SAXS) spectrum (12-ID-B beam-
line, APS) and transmission electron microscopy (TEM)
image in Fig. 1(a) indicate an absence of an extensive
nanoparticle network in the PNC. This conclusion is further
supported by the linear viscoelastic spectra of the pristine
PMMA and PMMA=SiO2 in Fig. 1(b), where the two
samples exhibit almost identical loss factors,
tan δ≡G00=G0, in the entire rubbery plateau region
[Fig. 1(b) inset]. On the other hand, the presence of NPs
in PMMA=SiO2 leads to a threefold increase of plateau
modulus, compared to the pristine PMMA. These rheo-
logical and structural properties clearly show that the
mechanical reinforcement in PMMA=SiO2 is dominated
by the hydrodynamic effect, rather than a network due to
percolation of nanoparticles. This makes PMMA=SiO2 an
ideal candidate for SANS investigations of the influence of
NPs on the molecular deformation of the matrix polymer.

The details of the sample preparation, characterization, and
methods are presented in the Supplemental Material [12].
We apply the zero average contrast (ZAC) method [28]

to characterize the molecular deformation of the polymer
matrix on different length scales by SANS, which is a key
for clarifying the microscopic consequences of hydrody-
namic reinforcement. The details of identification of the
ZAC point are described in the Supplemental Material [12].
We first focus on the analysis of evolution of structural
anisotropy during continuous uniaxial extension. The
pristine PMMA and PMMA=SiO2 were stretched with a
constant Hencky strain rate of _ϵ ¼ 0.01 s−1 at T ¼ 423 K
to different elongation ratios, followed by a fast quench to
room temperature to preserve the molecular deformation
(see the Supplemental Material [12]). The SANS spectra of
these glassy samples were then measured at the NGB 30m
SANS beamline at NCNR.
Figure 2(a) presents the stress-strain curves of PMMA

and PMMA=SiO2, along with the 2D SANS spectra at
λ ¼ 1.2, 1.5, 1.8, and 2.1. While the presence of NPs
significantly enhances the mechanical stress (green circles),
there is no appreciable difference between the SANS
spectra of the two samples. We employ the spherical
harmonic expansion analysis to further quantify the struc-
tural anisotropy from the 2D SANS spectra (see Ref. [26]
and the Supplemental Material [12] for details). This
technique decomposes the SANS spectra into contributions
from different symmetries and allows a clear separation of
isotropic and anisotropic spectral components. Under the
ideal ZAC condition, the coherent scattering intensity
IcohðQÞ of PMMA=SiO2 should be proportional to the
single-chain structure factor SðQÞ of PMMA [24,29]:
IðQÞ ≈ IcohðQÞ ¼ ϕpolϕHϕDnsegðbD − bHÞ2NSðQÞ, where
ϕpol is the polymer volume fraction, ϕH and ϕD are,
respectively, the volume fractions of hydrogenous and
deuterated chain segments, nseg is the polymer segment
number density, bD and bH are, respectively, the coherent
scattering lengths of the deuterated and hydrogenous chain
segments, N is the degree of polymerization (number of
segments per chain), and SðQÞ is the single-chain structure
factor. For uniaxial extension, SðQÞ can be expressed as a
linear combination of even degree spherical harmonic
functions Y0

l ðθ;ϕÞ with Q-dependent expansion coeffi-
cients S0l ðQÞ,

SðQÞ ¼
X
l∶even

S0l ðQÞY0
l ðθ;ϕÞ; ð1Þ

with θ being the polar angle and ϕ the azimuthal angle.
A schematic representation of the scattering geometry is
included in the Supplemental Material [12]. Experi-
mentally, the coefficients S0l ðQÞ can be obtained from
weighted angular integrals of the SANS spectra,

200 nm
(a)

(b)

FIG. 1. (a) Small-angle x-ray scattering spectrum of PMMA=
SiO2. Inset: TEM image of the same sample. (b) Linear visco-
elastic spectra of PMMA and PMMA=SiO2 at 423 K. These
mastercurves are constructed using the time-temperature super-
position principle [27]. Here, ω is the angular frequency and aT is
the shift factor. Stars: PMMA. Circles: PMMA=SiO2. Inset: loss
factor tan δðωÞ≡ G00ðωÞ=G0ðωÞ.
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S0l ðQÞ ¼ 1

2

Z
π

0

IxzðQ; θÞY0
l ðθÞ sin θdθ= limQ→0

IisoðQÞ: ð2Þ

Here, IxzðQ; θÞ is the intensity measured on the two-
dimensional (2D) detector plane (xz plane) and
limQ→0IisoðQÞ is the zero-angle scattering of the isotropic
sample. Our previous analysis (see the Supplemental
Material of Ref. [25]) demonstrates that the tensile stress
(σzz − σxx) of Gaussian chains is determined by the two-
point spatial correlations associated with only the spherical
harmonic function Y0

2ðθ;ϕÞ: σzz − σxx ¼ 2νβ2kBT
½ 1ffiffi

5
p

R∞
0 4πr2ψ0

2ðrÞr2dr�, where ν is the number density of

“load-bearing strands,” β2 ≡ 3=2sb2, with s being the
number of beads in the strand and b the bead size, and
ψ0
2ðrÞ ¼ 1

4π

R
ψðrÞY0

2ðθ;ϕÞdθdϕ is the leading anisotropic

expansion coefficient of the strand configuration distribu-
tion function ψðrÞ. While a direct connection between
S02ðQÞ and stress is yet to be established, in the small-strain
limit, it can be shown with the affine deformation model
that the molecular strain is approximately proportional to
the peak amplitude of the S02ðQÞ [12]. In other words, the
structural anisotropy determined from the ZAC SANS
experiments should reflect the contribution of the polymer
matrix to the total stress.
Figure 2(b) shows the spherical harmonic expansion

analysis of the PNC (symbols) and the pristine polymer
(lines). On the one hand, the leading anisotropic
terms S02ðQ; λÞ of both the pristine polymer and the PNC
increase with the stretching ratio λ in the Q range of
0.008–0.065 Å−1. On the other hand, the isotropic coef-
ficients S00ðQ; λÞ of the pristine polymer and the PNC [inset
of Fig. 2(b)] exhibit no discernible difference across all Qs.
This observation underscores the advantage of the spherical
harmonic expansion technique over the traditional analysis
of scattering intensities in parallel and perpendicular
directions, where the contributions from isotropic and
anisotropic coefficients are not isolated. More details of
the differences between the SHE analysis and traditional
analysis are presented in the Supplemental Material [12].
Note that the previous SANS experiment [16] relied
heavily on model assumptions to characterize polymer
microscopic deformation, producing large uncertainties
especially under imperfect ZAC condition. From this
perspective, the separation of isotropic and anisotropic
spectral components by the SHE analysis permits a
quantitative examination of the molecular overstraining
idea. Remarkably, the S02ðQ; λÞ of the PMMA=SiO2 is
almost identical to that of the pristine PMMA across the
whole Q range at λ ¼ 1.2 and 1.5. Moreover, at larger
deformation of λ ¼ 1.8 and 2.1, the magnitude of S02ðQ; λÞ
of the PNC appears to be slightly smaller than the pristine
polymer, implying the presence of NPs reduces the average
deformation of the polymer matrix rather than amplifying
it. By contrast, the stress in PMMA=SiO2 is approximately
100% (at λ → 1.2) to 23% (at λ ¼ 2.1) higher than that in
the PMMA. In other words, a naïve application of the strain
amplification concept should predict significantly higher
structural anisotropy, which we clearly do not observe in
the SANS experiments.
The lack of increased structural anisotropy from the

SANS measurements and the significant mechanical
enhancement in both the linear and nonlinear rheological
regimes beg an explanation: where does the extra stress
come from? It was previously suggested that direct filler-
filler interactions are the main cause for such a phenome-
non [19,20]. To critically test this hypothesis, we proceeded
to perform stress relaxation experiments. Because of the
slow nature of particle Brownian motions [30], PNCs with
an extended particle network should exhibit a two-step
relaxation with a long tail in the relaxation modulus [31].

(a)

(b)

FIG. 2. (a) Stress-strain curves of PMMA and PMMA=SiO2 at
a constant Hencky strain rate of _ϵ ¼ 0.01 s−1 at T ¼ 423 K,
along with the SANS spectra taken at stretching ratios of 1.2, 1.5,
1.8, and 2.1. We point out that the stress enhancement at large
strains, ca. 23%, is consistent with the hydrodynamic effect
of nanoparticles from the Padé approximation. (b) Spherical
harmonic expansion coefficients. Here, S00ðQÞ and S02ðQÞ are,
respectively, the isotropic and leading anisotropic expansion
coefficients of the structure factor SðQÞ. Symbols: PMMA=SiO2.
Lines: PMMA.
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Nevertheless, a quantitative prediction is not possible at
this moment, due to the lack of information on particle
distribution as well as a feasible theoretical model.
Figure 3(a) shows the evolution of engineering stress in
PMMA (dashed line) and PMMA=SiO2 (red crosses)
during and after a step deformation of λ ¼ 1.8. Because
of the presence of nanoparticles, the stress of PMMA=SiO2

is about 30% higher than that of PMMA. However,
contrary to the phenomenology of a two-step relaxation
in PNCs with nanoparticle network, there is no sharp
drop of stress in PMMA=SiO2 during the initial phase of
relaxation [inset of Fig. 3(a)] or a slowly decaying tail in the
long-time limit. In fact, as shown by the inset of Fig. 3(a),
the stress relaxation curves of PMMA and PMMA=SiO2

are parallel to each other. These features indicate an
absence of noticeable stress contribution from the nano-
particle-nanoparticle interactions in the PMMA=SiO2—a
conclusion that is consistent with the SAXS and linear

viscoelastic measurements, where no signs of a nano-
particle network are found.
What about the polymer structural anisotropy during stress

relaxation? We further performed SANS measurements and
analyzed the spectra at different elapsed time, t ¼ 0τ, 0.01τ,
0.03τ, 0.1τ, 0.3τ, and 1τ during the stress relaxation at
λ ¼ 1.8, where τ is the terminal relaxation time of the pristine
PMMA estimated from the low-frequency crossover of the
storage and loss moduli. The inset of Fig. 3(b) presents the
normalized anisotropic coefficients S02ðQ; tÞ=S02ðQ; 0Þ of
the PNCs (symbols) and the pristine polymer (lines) during
the relaxation. Similar to the results of continuous extension,
the normalized structural anisotropy of the two samples is
almost identical over a length scale from Q ¼ 0.008 Å−1 ¼
1=ð125 ÅÞ ∼ R−1

g (inverse of radius of gyration) to Q ¼
0.065 Å−1 ¼ 1=ð15.4 ÅÞ ∼ l−1K (inverse ofKuhn length) and
a time scale up to ∼τ. Furthermore, the previous reported
scaling relation for anisotropy relaxation (based on polysty-
rene and coarse-grainMDsimulations) holds true for both the
pristine PMMA and PMMA=SiO2 [Fig. 3(b)] [25],

S02ðQ; tÞ
S02ðQ; 0Þ ≈ exp ½−ðΓtÞ12�; ð3Þ

where the characteristic decay rateΓ ∝ QRg=τ. Evidently, the
inclusion ofNPs does not affect the slow relaxation dynamics
of the deformed polymer matrix.
To recap the preceding analysis, our SANS and rheo-

logical measurements unambiguously reveal substantial
mechanical reinforcement with no enhanced polymer
structural anisotropy during both uniaxial extension and
subsequent relaxation. The absence of strain amplification
in the matrix polymer is especially intriguing, given the
prevailing viewpoint that the matrix polymer should
undergo larger deformation to fulfill the macroscopic
deformation due to the presence of nondeformable inor-
ganic particles [18]. Moreover, the rheological signatures
of the relaxation experiments rule out NP-NP interactions
as the mechanism for reinforcement. These observations
significantly challenge the current molecular understanding
of the mechanical reinforcement of PNCs and call for a
different explanation of the role of NPs in modifying the
deformation of the matrix polymer.
According to the classical hydrodynamic theory for

dilute particle suspensions [11,32–36], the particle distorts
the strain field surrounding the nanoparticles, and such an
effect propagates far into the bulk, over a distance of a few
times of the size of the particle [12]. More importantly, the
net disturbance of the particle to the strain of the matrix
polymer is zero across the matrix. In other words, the
hydrodynamic reinforcement theory implies an enhanced
mechanical response from the resistance of particles to the
straining field with zero average disturbance of the velocity
gradient or strain field in the bulk [12]. Our experiments, on

(a)

(b)

FIG. 3. (a) Evolution of engineering stress σeng of PMMA
(lines) and PMMA=SiO2 (symbols) during a step uniaxial
extension performed with _ϵ ¼ 0.01 s−1 at T ¼ 423 K and the
subsequent stress relaxation at λ ¼ 1.8. The time t is normalized
by the terminal relaxation time τ of the pristine PMMA. Inset:
engineering stress during relaxation. (b) PMMA and
PMMA=SiO2 exhibit identical scaling behavior for anisotropy
relaxation. S02ðQ; 0Þ is the expansion coefficient immediately
after the step deformation, whereas S02ðQ; tÞ is the coefficient
during the stress relaxation. Inset: spatial dependence of the
normalized expansion coefficient S02ðQ; tÞ=S02ðQ; 0Þ during the
relaxation.
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the other hand, show enhanced stress governed by polymer
matrix but no increase of polymer structural anisotropy, in
excellent agreement with this picture. Thus, the classical
hydrodynamic theory, at the leading order, explains the
molecular mechanism of mechanical reinforcement in
PNCs—a redistribution of the stress and strain field over
a large area surrounding the nanoparticles rather than strain
amplification of the entire matrix polymer. The particle-
induced redistribution of the stress and strain also leads to
an enhancement in the mechanical properties. Nevertheless,
a rigorous calculation on the influence of nanoparticles to
the stress and strain field in concentrated PNCs is chal-
lenging [37], due to the complex geometry and the multi-
scale coupling [38,39] of the polymer-nanoparticle and
nanoparticle-nanoparticle interactions, such as the interplay
between polymer adsorption, interfacial entanglement, and
hydrodynamic force. The detail of strain field distribution
requires further investigation.
As far as the scattering problem is concerned, a precise

calculation appears to be difficult even for this simple
case. However, for a homogeneous system in the small-
strain limit, the influence of an elastic deformation on
the pair distribution function gðrÞ can be formally described
by a multipole expansion as [40,41] gðrÞ− gðrÞ ¼
f−½ðE− IÞ · r� ·∇ggðrÞ þ 1

2
f−½ðE− IÞ · r� ·∇g2gðrÞ þ � � �,

where E is the deformation gradient tensor and I is the
isotropic tensor. Suppose the particle size is relative large
and we are probing the structure at relatively high Q, it can
be argued that in this limit the anisotropic pair correlation
functions can be averaged in different fluid elements.
Truncating the expansion at the first order, it is straightfor-
ward to show that the average deformed single-chain
structure is indeed not affected by the presence of particles.
While our PNC system cannot be regarded as a dilute
suspension of silica particles, the results from SANS and
rheological experiments suggest that the underlying physi-
cal picture is strikingly similar. It is worth noting that the
evolutions of both the mechanical signal and structural
anisotropy parallel those of the pristine polymer during
stress relaxation, which is consistent with the current
interpretation. Lastly, we point out that our explanation
does not necessarily exclude potentially highly localized
responses from interfacial polymers in the vicinity of the
nanoparticles [42–44].
In summary, the microscopic origin of mechanical

reinforcement in deformed polymer nanocomposite melts
is investigated through a combination of small-angle
neutron scattering and rheology. In contrast to the prevail-
ing viewpoint of molecular overstraining, strain amplifi-
cation is not observed by SANS. Similar to the classical
picture of Einstein and Smallwood for dilute suspensions,
the enhanced mechanical response originates from the
resistance of particles to the straining field, whereas the
average disturbance of the deformation gradient in the bulk
is nearly zero. This finding clarifies a long-standing puzzle

regarding the molecular origin of the mechanical reinforce-
ment mechanism in deformed PNCs and provides a new
perspective for understanding of the hydrodynamic effect
of nanosized particles in viscoelastic medium. While the
current experiments focus on the deformation rate in the
middle of the rubbery plateau, our conclusions should
apply to the entire rubbery regime, where the entanglement
dynamics dominates the rheological behavior.
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