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Motivated by recent nonlocal transport studies of quantum-Hall-magnet (QHM) states formed in
monolayer graphene’s N ¼ 0 Landau level, we study the scattering of QHM magnons by gate-controlled
junctions between states with different integer filling factors ν. For the ν ¼ 1j − 1j1 geometry we find that
magnons are weakly scattered by electric potential variation in the junction region, and that the scattering is
chiral when the junction lacks a mirror symmetry. For the ν ¼ 1j0j1 geometry, we find that kinematic
constraints completely block magnon transmission if the incident angle exceeds a critical value. Our results
explain the suppressed nonlocal–voltage signals observed in the ν ¼ 1j0j1 case. We use our theory to
propose that valley waves generated at ν ¼ −1j1 junctions and magnons can be used in combination to
probe the spin or valley flavor structure of QHM states at integer and fractional filling factors.
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Introduction.—The recent discovery of magnetic order in
two-dimensional materials [1–5] has suggested new strat-
egies to build ultracompact spintronic devices that utilize
magnons as weakly dissipative information carriers [6–8].
Ordered states, referred to generically as quantum Hall
magnets (QHMs), occur in graphene in a strong magnetic
field and break spin and valley symmetries [9–25]. Because
of their electronic simplicity and gate tunability, and also
because the technology needed to prepare extremely clean
and well characterized monolayer graphene samples is well
established [26–29], graphene QHMs are an excellent
system in which to demonstrate two-dimensional spintronic
and magnonic device concepts.
When a strong magnetic field is applied perpendicular to

a 2D graphene sheet, the π orbitals of the carbon atoms
form Landau levels with approximate fourfold isospin
degeneracy. The isospin degeneracy combines a twofold
valley pseudospin with the electron spin degree of freedom.
In a partially filled Landau level, Coulomb interactions
often break the Hamiltonian’s SU(4) isospin symmetry and
give rise to a rich family of correlated insulating states. At
an integer filling factor, the ground state is a single
Slater determinant and can be therefore described by
Hartree-Fock mean-field theory [24,30,31]. At filling factor
ν ¼ �1, i.e., at three-quarter and one-quarter filling of the
N ¼ 0 Landau level quartet, the ground state is analogous
to the QHM states found in two-dimensional electron gases
in semiconductor quantum wells and consists of fully spin
and valley polarized electrons (ν ¼ −1) or holes (ν ¼ 1)
[32]. In contrast, the ground state at filling factor ν ¼ 0
(half filling of the N ¼ 0 Landau level) is more compli-
cated. As pointed out by Kharitonov [24], the ν ¼ 0 phase
diagram contains a ferromagnet (F), a canted antiferro-
magnet (CAF), a Kekulé distortion state, and a charge
density wave. The competition between these states is

influenced by weak lattice-scale Coulomb interactions
that break SU(4) symmetry, sample-dependent substrate-
induced sublattice polarization potentials [33–35],
dielectric screening [36], and in-plane magnetic fields.
The systematic [13] dependence on in-plane magnetic field
of an edge-state metal-insulator transition strongly suggests
that the ν ¼ 0 ground state is a CAF in which opposite
valleys have different spin polarizations. The ordered states
at ν ¼ 0, �1 support low-energy collective excitations
[16–18] that are analogous to magnon modes in conven-
tional magnetic systems, and which we will refer to as QH
magnons.
Recent experiments [37–41] have studied the trans-

mission of QH magnons through junctions between distinct
QHM states. In Refs. [38–41], ν ¼ 1 QH magnons are
generated electrically by driving magnon-mediated tran-
sitions between conducting edge states with different spin
orientations. The change in conduction spin is transferred
to a magnon that can be propagated through the two-
dimensional bulk. (See Ref. [42] for a theoretical model of
the magnon generation process.) Magnons are then guided
toward 1jνmj1 QHM junctions, where νm is a (gate-tunable)
filling fraction of interest sandwiched between ν ¼ 1
regions. Any magnons transmitted through the junction
generate nonlocal electrical signals on the opposite side of
the device via the reciprocal of the magnon generation
process. Measured nonlocal voltages suggest that the
1j − 1j1 junction is nearly transparent for magnons, since
the nonlocal voltage signal is not greatly reduced by its
presence. In contrast, the nonlocal voltage signal is greatly
suppressed by ν ¼ 1j0j1 junctions. This finding requires an
explanation since the νm ¼ 0 canted antiferromagnet also
supports magnons [43–46].
In this Letter, we use microscopic theory to calculate

magnon transmission through 1jνmj1 QHM junctions. For
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νm ¼ −1 we find that although the magnon modes are
identical in all regions, the electrostatic inhomogeneity of
the junction partially reflects magnons. The νm ¼ 0 CAF
state has two magnon branches that, except at very small
momenta, have higher energies than ν ¼ 1 magnons. We
find that this energy mismatch leads to perfect reflection
above a critical angle of incidence Θc, explaining the
difference in nonlocal electrical signals.
Generalized random phase approximation.—We formu-

late the problem of collective-mode transmission by study-
ing the dynamics of the N ¼ 0 Landau level single-particle
density matrix

i∂tP̂ðtÞ ¼ ½Ĥ; P̂ðtÞ�; ð1Þ

where Ĥ is the mean-field Hamiltonian determined self-
consistently at each instant in time:

Ĥkþqy;k ¼ Ĥ0
kδqy;0 þ Σ̂H

kþqy;k þ Σ̂F
kþqy;k; ð2aÞ

Ĥ0
k ¼ −

Δz

2
sz −

Δv

2
τz þ EbðkÞ; ð2bÞ

Σ̂H
kþqy;k ¼

Xz
α¼0

X
k0

Vαðk − k0; qyÞtrðταP̂k0þqy;k0 Þτα; ð2cÞ

Σ̂F
kþqy;k ¼ −

Xz
α¼0

X
k0

Vαðqy; k − k0ÞταP̂k0þqy;k0τ
α: ð2dÞ

The single-particle Hamiltonian Ĥ0
k, specified in Eq. (2b),

includes Zeeman energy (Δz ¼ gμBjBj), valley polarization
energy (Δv) and background electrostatic (Eb) energy
contributions. Δv is induced by adjacent hexagonal
Boron-Nitride (hBN) layers if aligned and Eb controls
the spatial variation of filling fraction. Here s (τ) are Pauli
matrices in spin (valley) space and the wave vectors k are
Landau gauge momenta in the direction along the junction
line. The electrostatic background potential Eb is k depen-
dent because Landau gauge eigenstates are localized along
guiding center lines with x coordinate X ¼ kl2B, where lB is
the magnetic length. In Eqs. (2c)–(2d), the α ¼ 0 and α ¼
x; y; z self-energy terms account respectively for the SU(4)
invariant long-range Coulomb interaction and the short-
range valley-dependent interactions [47]. The time-inde-
pendent self-consistent solutions of Eq. (1) preserve trans-
lational symmetry along the junction line and are therefore
diagonal in k [48]:

P̂0
kþqy;k

¼ δqy;0
X3
m¼0

fm;kjk;mihk;mj; ð3Þ

where jk;mi is the mth mean-field band ordered energeti-
cally from 0 to 3 and fm;k is its occupation number. We plot
the quasiparticle band structure of a ν ¼ 1j − 1j1 junction

in Fig. 1 for future reference. To describe small amplitude
dynamics, we expand P̂ðtÞ ¼ P̂0 þ δP̂ðtÞ and use the
compact notation

ψkmnðqy;ωÞ≡
Z

∞

−∞
dthkþ qy;mjδP̂ðtÞjk; nieiωt; ð4Þ

to denote particle-hole transition amplitudes with momen-
tum qy. When linearized in δP̂, Eq. (1) implies that

ωψkmnðqy;ωÞ ¼
X
k0m0n0

Kk0m0n0
kmn ðqyÞψk0m0n0 ðqy;ωÞ; ð5Þ

where ω is the collective mode frequency and Kk0m0n0
kmn is the

RPA kernel that acts as a superoperator on the collective
mode ψ [47]. Equation (5) is known as the generalized RPA
equation [49–51].
Magnon scattering.—The magnon scattering problem is

complicated by the strong nonlocality of the RPA kernel
Kk0m0n0

kmn ðqyÞ. In the absence of a junction Kk0m0n0
kmn ðqyÞ is

invariant under simultaneous translation of guiding centers
kl2B and k0l2B, allowing Eq. (5) to be solved by Fourier
transformation to obtain bulk modes labeled by two-
dimensional wave vectors q ¼ ðqx; qyÞ with energies
ωiðqÞ. Some key properties of the bulk collective modes
are briefly summarized in Table I. Since qy remains a good
quantum number in the presence of a 1jνmj1 junction, we
are left with a qy-dependent one-dimensional scattering
problem with the ν ¼ 1 bulk modes as asymptoptic states.
We therefore apply the scattering boundary conditions

FIG. 1. Self-consistent Hartree-Fock band structure of a
1j − 1j1 junction in which the sense of valley polarization is
opposite in the ν ¼ 1 and ν ¼ −1 regions. The uniform ν ¼ 1 and
ν ¼ −1 states have majority (↑) spin occupation selected by the
weak Zeeman coupling and, for unaligned hBN encapsulation,
spontaneously chosen valley polarization. The black solid lines
show K valley quasiparticle energies vs guiding center, and the
red dashed lines show the K0 valley orbitals that cross the Fermi
level (EF ¼ 0) at ν ¼ 1j − 1 junctions. The curly line represents
the bands involve in particle-hole transition of a ν ¼ �1magnon.
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ψk30ðqy;ωÞ ¼
(
eiqxkl

2
B þ rðqy;ωÞe−iqxkl2B ; k → −∞

tðqy;ωÞeiqxkl2B ; k → ∞

ψkmnðqy;ωÞ ¼ 0; k → �∞ and m; n ≠ ð3; 0Þ:
ð6Þ

The asymptotic states are pure (ψk30) ν ¼ 1 magnons that
are gapped by the Zeeman energy [38,39]. In Eq. (6) qx is
determined by solving ωsðqÞ ¼ ω, see Table I. We solve for
the scattering states and the qy-dependent reflection
rðqy;ωÞ and transmission tðqy;ωÞ coefficients by discretiz-
ing k, applying Eq. (5) at j ¼ 1;…; N points in a scattering
region centered on the junction, and substituting the
asymptotic expressions for ψk0m0n0 ðqy;ωÞ at j ¼ 1,
j ¼ N, and outside the junction. Only the m, n ¼ ð3; 0Þ
RPA equation is applied at j ¼ 1 and j ¼ N, which are

assumed to be in the asymptotic region. This procedure
yields a set of inhomogeneous linear equations [47] that we
have converged with respect to guiding center mesh density
to obtain the results discussed below.
Magnon transmission results.—Our results for the mag-

non transmission probabilities Tðqy;ωÞ ¼ jtðqy;ωÞj2 of
1jνmj1 QHM junctions with νm ¼ −1 and νm ¼ 0 are
shown in Figs. 2(a) and 2(d), respectively. Both junctions
have a threshold energy ωtr, below which there is no
transmission, Tðqy;ω < ωtrÞ ¼ 0. For a 1j − 1j1 junction,
the bulk ν ¼ �1 regions have identical magnon disper-
sions, so the threshold energy is simply the bulk magnon
energy at normal incidence: ωtr ¼ ωsð0; qyÞ. For ω > ωtr,
we find magnon transmission decreases with increasing qy.
The reduction is due to a peculiar property of collective
mode excitations in quantum Hall systems, namely, that
the center-of-mass momentum q of a particle-hole excita-
tion is related to its electric-dipole moment p by [52–54],
p ¼ jejl2Bẑ × q, as illustrated in Fig. 2(c). Magnons with
larger qy scatter more strongly off the electric fields Ex̂
present in the junction region. When we examine the 1j − 1
and −1j1 junctions separately, we find that magnons with
opposite signs of qy have different transmission prob-
abilities, as shown in Fig. 2(b). This behavior is expected
since the 1j − 1 junction acts like a repulsive scatterer when
the dipole moment has an x̂ projection opposite to the
junction electric field, and like an attractive scatterer when
the x̂ projection has a dipole moment that is aligned with

TABLE I. Properties of the magnon mode ωs of the ν ¼ 1 F
state and the two magnon modes ω1;2 of the ν ¼ 0 CAF state. The
CAF modes are linear-combinations of spin-flips in the K and K0
valleys (A and B sublattices) [47].

ν Modes Gap Description

�1 ωs Δz Spin precession in a single valley
0 ω1 0 In-plane(⊥B) oscillation of Néel vector n
0 ω2 Δz Precession of spin-polarization m about B field

(a)

(d) (e) (f)

(b) (c)

FIG. 2. Magnon transmission probabilities Tðqy;ωÞ vs ω for ν ¼ 1j − 1j1 (a), ν ¼ 1j − 1ðbÞ and ν ¼ 1j0j1 (d) QHM junctions [47].
(c) Schematic particle-hole pairs in ν ¼ 1j − 1 junctions. The interfacial electric fieldE points from ν ¼ 1 to ν ¼ −1. Negative (positive)
signs represents electrons (holes). The dipole moment p of electron-hole pairs is perpendicular to both the magnetic field B and the
center-of-mass momentum q. (e) Color plot of the magnon transmission probability through a ν ¼ 1j0j1 junction vs energy and angle of
incidence. (f) Magnon dispersions in uniform ν ¼ �1 F states (ωs) and in ν ¼ 0 (ω1;2) CAF states. These results are generated with
experimental determined Coulomb interaction strength at B ¼ 8 T [47] in a geometry with width Ly ¼ 80πlB and the length of νm
region is 30lB.
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the junction electric field. The total transmission through
the 1j − 1j1 junction plotted in Figs. 2(a) and 2(d) has
qy → −qy symmetry because the studied model has mirror
symmetry about the y–z plane at the center of the ν ¼ νm
region. We have verified that the junction scattering
becomes chiral when this symmetry is absent.
The threshold energy ωtr in Fig. 2(d) (1j0j1 junction)

appears to be significantly larger than in Fig. 2(a) (1j − 1j1
junction). The suppressed magnon transmission is due to a
mismatch between CAF and F collective mode dispersions.
As shown in Fig. 2(f), the bulk collective modes of ν ¼ 0
CAFs disperse more strongly than those of ν ¼ 1 Fs, so that
ω1;2 has higher energy than ωs, except at very small
momenta where ω1 is gapless while ω2 and ωs are gapped.
To transmit a ν ¼ 1 magnon with energy ω ¼ ωs and
parallel momentum qy through 1j0 junction, the conserva-
tion of energy and parallel momentum requires that

ωsðqLx ; qyÞ ¼ ω1ðqRx ; qyÞ; ð7Þ

where qL=Rx ≥ 0 are the asymptotic normal momenta on the
left (L) and right (R) sides of the 1j0 junction. We identify
the threshold energy as ω1ð0; qyÞ, the value of ω for which
qRx → 0. Since ω1ð0; qyÞ > ωsð0; qyÞ we conclude that the
1j0j1 junction has a higher threshold energy than 1j − 1j1
junction. Once the incoming magnon energy exceeds
ωtrðqyÞ, as illustrated in Fig. 2(d), T rapidly approaches
1. This property can be understood by noting the valley
polarization of superpositions of ω1 and ω2 modes vary on
the long length scale λ0 ¼ ðqRx1 − qRx2Þ−1, where qRx1 and qRx2
are the nearly identical local x wave vectors of the nearly
degenerate [Fig. 2(f)] ω1;2 modes. A ν ¼ 0 magnon can
therefore maintain the valley polarization of the ν ¼ 1
magnon across the junction, provided that the νm region is
shorter than λ0. Our results for 1j0j1 junction magnon
transmission are summarized in Fig. 2(e), in which the
transmission probability is plotted as a function of energy
and angle of incidence Θ ¼ arctanðqy=qLx Þ. The black
curve shows the critical incident angle Θc, obtained by
solving Eq. (7) with qRx ¼ 0. For higher angles of

incidence, momentum and energy conservation imply that
the magnons are evanescent waves in the ν ¼ 0 region.
The transmission probabilities in Fig. 2 exhibit Fabry-

Pérot oscillations generated by the repeated scattering at the
two interfaces. The interference pattern will be smeared out
in observables when the experimental device [38] allows a
magnon to incident on the magnetic junction from all
angles. It is therefore more informative to calculate the
average magnon transmission probability:

T̄ðωÞ≡ 1

π

Z
π=2

−π=2
dθTðqyðθ;ωÞ;ωÞ: ð8Þ

As shown in Fig. 3(a), the average transmission T̄ through a
1j0j1 junction is noticeably smaller than the transmission
through a 1j − 1j1 junction at low energies but becomes
comparable to a 1j − 1j1 junction at high energy. In our
calculation of 1j0j1 junction we assumed perfect screening
of induced Hartree potentials in the junction region by
nearby gates [48]. Since the inhomogeneity of the electro-
static potential is a source of magnon reflection, the
transmission through a 1j0j1 junction would be even lower
if we accounted for imperfect screening.
Discussion.—We now use our findings to interpret the

experimental results in Ref. [38] and to propose related
studies that might be informative. Magnons can be gen-
erated electrically by bringing edge channels with opposite
spins and different chemical potentials together at a hot
spot, opening a path for magnon-generation mediated edge-
channel spin flips. The energies of magnons generated in
this way are smaller than the electrical bias voltage.
Magnons will radiate out from the hotspot and those
transmitted through the interface will generate a nonlocal
voltage via the reciprocal of the injection process.
For a 1j0j1 junction, the measured nonlocal voltage [38]

is small even when the electrical bias voltage is raised to
∼5Δz. Our calculations show that this behavior is explained
by the larger energies of magnons in ν ¼ 0 regions
compared to ν ¼ 1 regions and the associated threshold
energy for magnon transmission in Fig. 2(d). The slow

(a) (b) (c)

FIG. 3. (a) Angularly average magnon transmission T̄ðωÞ vs ω. The parameters used in this calculation are the same as those in Fig. 2.
(b) Valley wave scattering devices. We propose to replace the 2j1 junction used in Refs. [38,39] with −1j1 junctions to generate valley
waves. (c) Band structure of a −1j1 junction used for valley-wave injection. All states color-coded with black and red are, respectively,
fully polarized in K and K0 valleys, while the spin rotates smoothly from ↑ to ↓ across the junction. For this calculation, valley
polarization energy Δv ¼ 3.7 meV correspond to the circumstances of Ref. [39].
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increase in average transmission probability T̄ with
magnon energy we find is also in agreement with experi-
mental trends[38]. We do find a peak in T̄ [cf. Fig. 3(a)] in a
narrow window of energy (1 < ω=Δz < 1.2) just above Δz
where the ν ¼ 0 and ν ¼ 1 magnon energies are more
similar that is not detected experimentally, presumably
because magnon generation in this energy window is not
sufficient to produce an observable signal.
The experimental nonlocal signals of 1j1j1 and 1j − 1j1

junctions are similar for bias voltages ≲5Δz, and much
larger than the voltages measured in the 1j0j1 case. In our
theory this property is due to the fact that ν ¼ 1 and ν ¼ −1
magnon modes have identical dispersions and therefore no
kinematic transmission constraints. Our theory does predict
finite reflection at 1j − 1j1 junctions that is absent in the
translationally invariant 1j1j1 case, but this will not be
observable if unintended scattering from disorder or the
split gate junctions dominates magnon scattering. Indeed,
as we have emphasized, our calculation has identified the
electrical dipole moments of QH magnons as a mechanism
for magnon scattering off variations in electrical potential.
Other extrinsic mechanisms such as spin-dependent dis-
order [55–57] near the sample edges can also suppress
magnon transmission but are unlikely to play a dominant
role in high quality devices used in Refs. [38,39].
Our theory emphasizes the general physical principle

behind magnon transmission and its suppression in a 1jνj1
magnetic junction. If the theory were applied to a specific
mesoscopic device, the device geometry including loca-
tions of contacts would need to be taken into account to
quantitatively interpret the nonlocal voltage. However, note
that the transmission probability calculated on the cylinder
is applicable to more complicated geometry as long as the
interface is smooth in the magnetic length scale and the
magnon momentum parallel to the interface is locally well
defined.
In closing, we propose an experimental protocol illus-

trated schematically in Fig. 3(b) to electrically generate
valley waves using the ν ¼ −1j1 junction. As shown in
Fig. 3(c), when the −1j1 interface receives finite valley
polarization potential from the aligned hBN, the mean-field
band structure hosts two edge states with opposite valley
polarization and nearly parallel spins whose chemical
potentials can be independently controlled via the contact-
ing geometry illustrated in Fig. 3(b). The bias voltage opens
up a path for valley-wave generation scattering between
edge channels. In order to increase valley-wave emission
probability, the edge states can be brought into close
proximity via a quantum point contact. We expect the
emitted valley waves to be transmitted through ground
states that support valley-wave excitations. Measuring
nonlocal voltages provides a new method to determine
the isospin structure of quantum Hall ground-states, which
remains an elusive target especially at fractional filling
factors [35]. In a broader context, the quantum-Hall-magnet

junctions [37–41] provide a simple operational way of
thinking about the transport of spin fluctuations across the
interfaces of different magnetic materials. This can help to
understand and test new spintronic ideas and have potential
applications to magnon-based logic devices [58].
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[36] L. Veyrat, C. Déprez, A. Coissard, X. Li, F. Gay, K.
Watanabe, T. Taniguchi, Z. Han, B. A. Piot, H. Sellier
et al., Helical quantum Hall phase in graphene on SrTiO3,
Science 367, 781 (2020).

[37] P. Stepanov, S. Che, D. Shcherbakov, J. Yang, R. Chen, K.
Thilahar, G. Voigt, M.W. Bockrath, D. Smirnov, K.
Watanabe et al., Long-distance spin transport through a
graphene quantum Hall antiferromagnet, Nat. Phys. 14, 907
(2018).

[38] D. S. Wei, T. van der Sar, S. H. Lee, K. Watanabe, T.
Taniguchi, B. I. Halperin, and A. Yacoby, Electrical gen-
eration and detection of spin waves in a quantum Hall
ferromagnet, Science 362, 229 (2018).

[39] H. Zhou, H. Polshyn, T. Taniguchi, K. Watanabe, and A.
Young, Solids of quantum Hall skyrmions in graphene, Nat.
Phys. 16, 154 (2020).

[40] H. Zhou, C. Huang, N. Wei, T. Taniguchi, K. Watanabe, M.
P. Zaletel, Z. Papić, A. H. MacDonald, and A. F. Young,
Strong-magnetic-field magnon transport in monolayer gra-
phene, arXiv:2102.01061.

[41] A. Assouline, M. Jo, P. Brasseur, K. Watanabe, T. Taniguchi,
T.Jolicoeur, P. Roche, D.C. Glattli, N. Kumada, F. D. Par-
mentier, and P. Roulleau, Unveiling excitonic properties of
magnons in a quantum Hall ferromagnet, arXiv:2102.02068.

[42] C. Huang, N. Wei, and A. MacDonald (to be published).
[43] G. Murthy, E. Shimshoni, and H. A. Fertig, Collective bulk

and edge modes through the quantum phase transition in
graphene at ν ¼ 0, Phys. Rev. B 93, 045105 (2016).

[44] S. Takei, A. Yacoby, B. I. Halperin, and Y. Tserkovnyak,
Spin Superfluidity in the ν ¼ 0 Quantum Hall State of
Graphene, Phys. Rev. Lett. 116, 216801 (2016).

[45] J. R. M. de Nova and I. Zapata, Symmetry characterization
of the collective modes of the phase diagram of the ν ¼ 0

quantum Hall state in graphene: Mean-field phase diagram
and spontaneously broken symmetries, Phys. Rev. B 95,
165427 (2017).

[46] F. Pientka, J. Waissman, P. Kim, and B. I. Halperin, Thermal
Transport Signatures of Broken-Symmetry Phases in Gra-
phene, Phys. Rev. Lett. 119, 027601 (2017).

[47] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.126.117203 for the details of the model,
the properties of the collective modes, and the numeric
methods to calculate transmission probability of collective
modes.

[48] N. Wei, C. Huang, and A. MacDonald (to be published).
[49] D. Pines and P. Nozieres, Theory of quantum liquids:

Normal fermi liquids, Advanced Book Classics (Westview
Press, 1994).

[50] J. W. Negele, The mean-field theory of nuclear structure and
dynamics, Rev. Mod. Phys. 54, 913 (1982).

[51] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer Science & Business Media, New York, 2004).

PHYSICAL REVIEW LETTERS 126, 117203 (2021)

117203-6

https://doi.org/10.1103/PhysRevB.74.075422
https://doi.org/10.1103/PhysRevB.74.075423
https://doi.org/10.1103/PhysRevB.76.195431
https://doi.org/10.1103/PhysRevB.76.195431
https://doi.org/10.1103/PhysRevB.75.165411
https://doi.org/10.1103/PhysRevB.80.235417
https://doi.org/10.1103/PhysRevB.80.235417
https://doi.org/10.1103/PhysRevLett.103.216801
https://doi.org/10.1088/0031-8949/2012/T146/014011
https://doi.org/10.1103/PhysRevLett.109.046803
https://doi.org/10.1103/PhysRevLett.109.046803
https://doi.org/10.1103/PhysRevB.85.155439
https://doi.org/10.1103/PhysRevB.85.155439
https://doi.org/10.1103/PhysRevLett.112.126804
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1038/nphys2007
https://doi.org/10.1038/nature23893
https://doi.org/10.1038/nature23893
https://doi.org/10.1103/PhysRevLett.96.256602
https://doi.org/10.1103/PhysRevLett.96.256602
https://doi.org/10.1103/PhysRevB.88.115407
https://doi.org/10.1126/science.1237240
https://doi.org/10.1103/PhysRevLett.110.216601
https://doi.org/10.1103/PhysRevLett.110.216601
https://doi.org/10.1038/s41567-018-0190-0
https://doi.org/10.1126/science.aax8201
https://doi.org/10.1038/s41567-018-0161-5
https://doi.org/10.1038/s41567-018-0161-5
https://doi.org/10.1126/science.aar4061
https://doi.org/10.1038/s41567-019-0729-8
https://doi.org/10.1038/s41567-019-0729-8
https://arXiv.org/abs/2102.01061
https://arXiv.org/abs/2102.02068
https://doi.org/10.1103/PhysRevB.93.045105
https://doi.org/10.1103/PhysRevLett.116.216801
https://doi.org/10.1103/PhysRevB.95.165427
https://doi.org/10.1103/PhysRevB.95.165427
https://doi.org/10.1103/PhysRevLett.119.027601
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117203
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117203
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117203
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117203
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117203
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117203
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.117203
https://doi.org/10.1103/RevModPhys.54.913


[52] L. Gor’kov and I. Dzyaloshinskii, Contribution to the theory
of the Mott exciton in a strong magnetic field, Sov. Phys.
JETP 26, 449 (1968).

[53] C. Kallin and B. I. Halperin, Excitations from a filled
Landau level in the two-dimensional electron gas, Phys.
Rev. B 30, 5655 (1984).

[54] J. Cao, H. A. Fertig, and L. Brey, Quantum geometric
exciton drift velocity, arXiv:2008.00259.

[55] P. Tikhonov, E. Shimshoni, H. A. Fertig, and G. Murthy,
Emergence of helical edge conduction in graphene at
the ν ¼ 0 quantumHall state, Phys. Rev. B 93, 115137 (2016).

[56] J.-H. Zheng and M. A. Cazalilla, Nontrivial interplay of
strong disorder and interactions in quantum spin-Hall
insulators doped with dilute magnetic impurities, Phys.
Rev. B 97, 235402 (2018).

[57] C. Huang and M. A. Cazalilla, Disorder effects on helical
edge transport in graphene under a strong tilted magnetic
field, Phys. Rev. B 92, 155124 (2015).

[58] B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg,
The building blocks of magnonics, Phys. Rep. 507, 107
(2011).

PHYSICAL REVIEW LETTERS 126, 117203 (2021)

117203-7

https://doi.org/10.1103/PhysRevB.30.5655
https://doi.org/10.1103/PhysRevB.30.5655
https://arXiv.org/abs/2008.00259
https://doi.org/10.1103/PhysRevB.93.115137
https://doi.org/10.1103/PhysRevB.97.235402
https://doi.org/10.1103/PhysRevB.97.235402
https://doi.org/10.1103/PhysRevB.92.155124
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1016/j.physrep.2011.06.003

