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Repulsive Bose-Bose mixtures are known to either mix or phase separate into pure components. Here we
predict a mixed-bubble regime in which bubbles of the mixed phase coexist with a pure phase of one of the
components. This is a beyond-mean-field effect that occurs for unequal masses or unequal intraspecies
coupling constants and is due to a competition between the mean-field term, quadratic in densities, and a
nonquadratic beyond-mean-field correction. We find parameters of the mixed-bubble regime in all
dimensions and discuss implications for current experiments.
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Mixtures of particles in the quantum regime have been a
topic of research in various fields of physics, starting from
experiments on liquid helium mixtures [1,2]. With the
development of ultracold atoms, it has been possible to
realize mixtures of atoms at low temperature and study their
properties with full control over the system parameters,
such as density and interactions. In particular, a number of
experiments on atomic Bose-Bose mixtures with repulsive
interactions have demonstrated the phenomenon of phase
separation [3–6], consistent with theoretical predictions
based on the mean-field (MF) approximation [7–12].
In the MF approximation, a mixture of two components

1 and 2 of densities n1 and n2 is mechanically stable when
the energy-density paraboloid

P
σσ0 gσσ0nσnσ0=2 is elliptic,

which requires that the modulus of the interspecies
coupling constant g12 be smaller than the geometrical
average

ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
of the intraspecies coupling constants

(both positive). Otherwise, the system undergoes
either a phase separation for g12 >

ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
or collapse

for g12 < − ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
. In both cases, the energy density

becomes a hyperbolic paraboloid, albeit the instabilities
proceed in different directions in the n1n2 plane. One of us
has shown that the beyond-mean-field (BMF) correction,
not quadratic in the densities, can stabilize collapsing
mixtures and can lead to their self binding [13]. Such
quantum droplets have recently been observed in potassium
mixtures [14–16] and potassium-rubidium mixtures [17]
and have also been theoretically predicted to occur in lower
dimensions [18]. BMF studies of mixtures close to the
phase-separation threshold have focused on the stability of
the mixed phase at finite temperature [19–21].
In this Letter, we investigate the zero-temperature

BMF phases of a weakly interacting mixture close
to the miscible-immiscible threshold, i.e., for small
δg ¼ g12 −

ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
. A new feature that we predict is that,

for unequal intraspecies interactions or unequal masses, the
1þ 2 mixed phase can form bubbles with tunable

population imbalance immersed in a pure gas of one of
the components. This manifestation of partial miscibility is
quite unexpected in the weakly interacting regime and is
due to the competition between the MF term, artificially
weakened by tuning to small δg, and the BMF correction,
nonquadratic in the component densities. Mixed bubbles
thus offer a relatively straightforward experimental path
toward detecting quantum effects in the mixture. In this
sense, they are similar to quantum droplets, which are
themselves manifestations of liquefaction, another pheno-
menon unexpected in the regime of weak interactions.
The problem is defined by the Hamiltonian

Ĥ ¼
X
σ¼1;2

X
p

ℏ2p2

2mσ
â†σ;pâσ;p

þ
X

σ;σ0¼1;2

X
pqk

gσσ0

2
â†σ;q−kâ

†
σ0;pþkâσ;qâσ0;p; ð1Þ

where we assume gσσ0 to be constants. However, in order to
avoid ultraviolet divergencies in dimensions D ¼ 2 and 3
the sum over k in the interaction term is cut off at jkj > κ.
Then, according to the standard Bogoliubov prescription,
we assume the macroscopic condensate occupations
âσ;0 ¼ aσ;0, expand Eq. (1) up to quadratic terms in the
operators âσ;p≠0 and â†σ;p≠0, diagonalize the resulting
Hamiltonian by the Bogoliubov transformation, and obtain
the ground-state grand potential density in the so-called
Bogoliubov approximation

Ω ¼
X
σ;σ0

gσσ0

2
nσnσ0 þ EB − μ1n1 − μ2n2; ð2Þ

where the Bogoliubov vacuum energy (leading BMF
correction) EB can be written explicitly (see Supplemental
Material [22]) as a function of the masses, densities, and
coupling constants.
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In order to describe the mixed-bubble effect in the most
transparent fashion, let us start with the mass-balanced case
m1 ¼ m2 ¼ m, where EB can be written in the form [13,18]

EB ¼

8>>>>>>><
>>>>>>>:

8
15π2

m4

ℏ3
P
�
c5�; D ¼ 3;

1
8π

m3

ℏ2
P
�
c4�

�
1
2
þ 2 ln mc�

ℏκ

�
; D ¼ 2;

− 2
3π

m2

ℏ

P
�
c3�; D ¼ 1;

ð3Þ

and the squared Bogoliubov sound velocities equal

c2�¼g11n1þg22n2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg11n1−g22n2Þ2þ4g212n1n2

p
2m

: ð4Þ

Equation (2) gives the first two leading terms in powers
of the weak-interaction parameter η ≪ 1, which scales in
different dimensions as ηD¼3∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m3g3n

p
=ℏ3, ηD¼2∝mg=ℏ2,

and ηD¼1 ∝
ffiffiffiffiffiffiffiffiffiffiffi
mg=n

p
=ℏ (here, for estimates, we take g11 ∼

g22 ∼ g12 ∼ g and n1 ∼ n2 ∼ n). We mention that in the
three-dimensional case the cutoff dependence has been
removed in the standard manner and in Eqs. (2)–(4) we use
the renormalized coupling constants gσσ0 ¼ 4πℏ2að3dÞσσ0 =m
defined by the three-dimensional scattering lengths.
One can also verify [18,22] that in the two-dimensional
case the grand potential is κ independent (to the
chosen approximation order), since for fixed scattering

lengths að2dÞσσ0 the coupling constants run with κ as

gσσ0 ¼ 2πℏ2=m ln½2eγ=κað2dÞσσ0 �, where γ is Euler’s constant.
Since η ≪ 1 the BMF term is generally much weaker

than the MF one. However, close to the phase-separation
threshold, in the regime δg=g ∼ η, they become comparable
in the sense that one of the eigenvalues of the matrix gσσ0 is
∝ −δg. The corresponding eigenvector designates a direc-
tion in the n1n2 plane, along which the system is “soft” and
sensitive to the BMF term, whereas in the perpendicular
direction the system’s behavior is still governed by the
dominant MF term [see Fig. 1(a)]. This separation of scales
makes the analysis of the phases, which consists of
minimizing Eq. (2) with respect to the densities, a two-
step process. In order to see this, let us define g ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

g11g22
p

,

introduce the asymmetry parameter α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22=g11

p
, and

rotate the n1n2 plane according to

nþ ¼ α−1=2n1 þ α1=2n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ α−1

p ; ð5Þ

n− ¼ −α1=2n1 þ α−1=2n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ α−1

p ; ð6Þ

with the constraints (equivalent to n1 > 0 and n2 > 0)

nL < n− < nR; ð7Þ

where nL ¼ −nþα and nR ¼ nþ=α. In these new notations,
the grand potential density reads

Ω ¼ αþ α−1

2
gn2þ − μþnþ

þ δg½n2þ − ðα − α−1Þnþn− − n2−�
αþ α−1

þ EB − μ−n−; ð8Þ

where we introduce μþ and μ− given by Eqs. (5) and (6)
with n’s formally replaced by μ’s. In Eq. (8) we have placed
the leading-order terms (∝ gn2) in the first line and the
next-order ones (∝ gn2η) in the second line. In order not to
exceed the accuracy of the Bogoliubov approximation, we
should set δg ¼ 0 in EB (recall that δg ∼ ηg), which
amounts to replacing c− by 0 and c2þ by

c2þjδg¼0 ¼ g
ðα3 þ 1Þnþ þ αðα − 1Þn−

mα
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 1

p ð9Þ

in Eq. (3).
Minimizing the first line of Eq. (8) with respect to nþ

gives

FIG. 1. (a) Schematic plot of Ωðn1; n2Þ showing a valley with
steep slopes in the nþ direction and a much smoother variation
along the soft n− direction. The concave-convex character of this
variation, visible for δgmin < δg < δgmax, is responsible for the
appearance of mixed bubbles. (b) Ω versus n− at fixed nþ in the
one-dimensional mass-balanced case with α ¼ 2.7 for five values
of δg ¼ δgminð1 − rÞ þ δgmaxrwith (from top to bottom) r ¼ 1.1,
0.8, 0.5, 0.2, and −0.1. The parameters δgmin and δgmax are given
by Eqs. (16) and (17). For better visibility, the chemical potential
μ− and a constant shift for each curve are chosen such that Ω is
the same on both ends of the interval (7). The dashed blue lines
are the tangent constructions showing the first-order phase
transitions between the pure 1 phase and the mixed phase.
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nþ ¼ μþ
gðαþ α−1Þ ; ð10Þ

and taking the second line into account produces a
correction to Eq. (10) of order δnþ ∼ ηnþ, which can be
neglected in the Bogoliubov approximation [one can check
that it leads to a correction ∼gn2η2 in Eq. (8)]. To this order,
nþ is independent of the phase of the system (fully mixed,
partially mixed, or fully separated) [23]. In the second step,
we thus arrive at the problem of minimizing Ω with respect
to n− on the interval (7) with nþ given by Eq. (10).
In Fig. 1(b) we plot Ωðn−Þ in the case ofD ¼ 1 for a few

values of δg, choosing α ¼ 2.7. For sufficiently large δg
this function is concave since it is dominated by the term
−δgn2−=ðαþ α−1Þ. It is thus minimized at the ends of the
interval (7), corresponding to the pure 1 and 2 phases. The
first-order phase transition between these phases happens at
μ− defined by the equation ΩðnLÞ ¼ ΩðnRÞ [the case
actually shown in Fig. 1(b)]. By contrast, Ωðn−Þ is convex
for large negative δg [see the lowest curve in Fig. 1(b)]. In
this case, the mixed phase is separated from pure phases 1
and 2 by two second-order phase transitions at μ−
determined by Ω0ðnLÞ ¼ 0 and Ω0ðnRÞ ¼ 0, respectively
[here Ω0ðnÞ ¼ dΩðnÞ=dn]. In the MF approximation
(where EB ¼ 0), these two scenarios are exhaustive; the
first is realized for δg > 0 and the second for δg < 0.
The BMF term EB leads to another scenario realized for

δgmin < δg < δgmax, where Ωðn−Þ can be concave in an
interval of n− and convex in another interval [see Fig. 1(a)
and the three intermediate curves in Fig. 1(b)]. For α > 1,
the concave region starts at nL (pure 1 phase) and ends at a
certain n− inside (7) corresponding to a mixed phase. The
blue dashed lines in Fig. 1(b) show the tangent construc-
tions corresponding to the first-order transitions between
the pure 1 phase and the mixed phase (blue dots).
In the canonical picture, first-order phase transition

means phase separation or, in other words, bubble
formation. Component 2, if one tries to admix it into a
big bath of 1 atoms, will spread over the whole system
for δg < δgmin. Otherwise, it will form either pure 2
bubbles for δg > δgmax or mixed (1þ 2) bubbles for
δgmin < δg < δgmax. The constitution of this mixed bubble
changes continuously from pure 2 to pure 1 phase as one
decreases δg [see the trajectory of the blue dots in
Fig. 1(b)].
We note that this new scenario of mixed bubbles appears

only in mixtures with unequal intraspecies interactions
(α ≠ 1) since, otherwise, cþ (and thus EB) does not depend
on n− [see Eq. (9)] and δgmin ¼ δgmax. The effect gets
enhanced with increasing α sinceΩðn−Þ then deviates more
from a quadratic function.
Although Fig. 1 corresponds to the concrete case D ¼ 1

and α ¼ 2.7, the qualitative picture remains the same for
D > 1 and for other values of α > 1 because of the
common feature that Ω00ðn−Þ monotonically grows with

n− [one can see this by substituting Eq. (9) into
Eq. (3)] giving to Ωðn−Þ a concave-convex look when
δgmin < δg < δgmax. The value of δgmin is determined by
the equation Ω00ðnLÞ ¼ 0, which is the condition for the
mixed-phase tangent point [blue dots in Fig. 1(b)] to
approach the left end of the interval (7). By contrast,
δg ¼ δgmax corresponds to the mixed-phase tangent point
located at the right end of the interval (7), which is
conditioned by Ω0ðnRÞ ¼ ½ΩðnRÞ −ΩðnLÞ�=ðnR − nLÞ.
From these formulas, we obtain in three dimensions

δgmin

g
¼ 1

π2
ðα − 1Þ2ðα2 þ 1Þ1=4

α3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3g3nþ

p
ℏ3

; ð11Þ

δgmax ¼
4

15

3α3=2 þ 6αþ 4α1=2 þ 2

ð ffiffiffi
α

p þ 1Þ2 δgmin: ð12Þ

In two dimensions, the bubble region can be defined with
the help of the parameter C,

2 < C <
1

2
þ α

α − 1
þ ðα − 2Þα ln α

ðα − 1Þ2 ; ð13Þ

related to δg by

δg
g
¼ ðα − 1Þ2

8πα

�
Cþ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 1

p
mgnþ

αðℏκÞ2
�
mg
ℏ2

: ð14Þ

To give an example of application of Eq. (14) consider a
quasi-two-dimensional mixture characterized by the three-

dimensional scattering lengths að3dÞσσ0 all much smaller than
the confinement oscillator length l. At low energies
≪ ℏ2=ml2 the two-body interaction in this geometry
is equivalent to a purely two-dimensional one characterized

by gσσ0 ¼ 2
ffiffiffiffiffiffi
2π

p
ℏ2að3dÞσσ0 =ml and κ ¼ ffiffiffiffiffiffiffiffi

β=π
p

=l, where
β ≈ 0.9 [24,25]. Equation (14) then transforms into

δa
a

¼ ðα − 1Þ2
2

ffiffiffiffiffiffi
2π

p
α

�
Cþ ln

ð2πÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
alnþ

αβ

�
a
l
; ð15Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að3dÞ11 að3dÞ22

q
and δa ¼ að3dÞ12 − a.

Finally, in one dimension we have

δgmin

g
¼ −

1

4π

ðα − 1Þ2ffiffiffi
α

p ðα2 þ 1Þ1=4
ffiffiffiffiffiffiffiffiffiffiffi
mg
ℏ2nþ

r
; ð16Þ

δgmax ¼
4ð ffiffiffi

α
p þ 2Þ

3ð ffiffiffi
α

p þ 1Þ2 δgmin: ð17Þ

Note that mixed bubbles require δg to be negative in low
dimensions and positive forD ¼ 3. From the MF viewpoint
these are, respectively, miscible and immiscible regimes.
The interval ðδgmin; δgmaxÞ widens with α and with η.
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The analysis of the mixed-bubble regime for m1 ≠ m2 in
the Bogoliubov approximation is the same as in the
mass-balanced case; Eqs. (5)–(8) and (10) remain valid.
Although the expression for EB is more cumbersome, it can
be put in a form convenient for minimization of Ωðn−Þ,
particularly for the relevant case g12 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

g11g22
p

(see
Supplemental Material [22]). Introducing m ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

m1m2

p
and z ¼ m2=m1, the blue and pink areas in Fig. 2 show
the mixed-bubble region in the plane ðδg=gÞ=η versus α for
the set of mass ratios z ¼ 1, 5, and 20 (from left to right)
and for different dimensions D ¼ 3, 2, 1 (from top to
bottom). For D ¼ 2, instead of ðδg=gÞ=η, we introduce

R ¼ ℏ2δg
mg2

−
1

8π

�
1

α
ffiffiffi
z

p þ α
ffiffiffi
z

p
−

4ffiffiffi
z

p þ 1=
ffiffiffi
z

p
�
ln
mgnþ
ðℏκÞ2 ;

ð18Þ

which does not run with κ in the Bogoliubov approximation
(see more details in the Supplemental Material [22]).

Independent of D, in the blue-shaded regions, the behavior
of Ωðn−Þ is qualitatively similar to the scenario depicted in
Fig. 1(b). The pink shading denotes the inverted scenario,
where Ωðn−Þ exhibits a convex-concave configuration and
where the mixed phase can coexist with the pure 2 phase.
For equal masses this corresponds to the exchange α⇄1=α
equivalent to 1⇄2. More generally, the bubble-regime
boundaries for the inverse mass ratios (z ¼ 1, 1=5, and
1=20) can be obtained from Fig. 2 by replacing α → 1=α
and exchanging the blue and pink shading.
In Fig. 2 we see that the mixed-bubble region signifi-

cantly widens with increasing the mass imbalance. This
feature, promising from the viewpoint of observing the
mixed bubbles, is due to the amplification of the non-
quadratic part of EB, particularly when ln α and ln z are of
the same sign. A noticeable peculiarity of the mass-
imbalanced cases is that when ln α and ln z are of different
signs, effects of the mass and interaction imbalance com-
pete with each other and pinch the mixed-bubble region.
However, since the two effects cannot completely cancel

FIG. 2. The regions of existence of mixed bubbles in three-dimensional (upper row), two-dimensional (middle row), and one-
dimensional (lower row) mixtures for three values of the mass ratio in the Bogoliubov approximation. The regions are plotted in terms of
α and ðδg=gÞ=η for D ¼ 1 and 3. In the case D ¼ 2, we use R defined in Eq. (18). The light gray areas show the miscible case and all
other regions correspond to various bubble regimes. The coexistence of phases A and B in these regimes is denoted by AjB, where A and
B stand for 1, (1þ 2), or 2. The regions ð1þ 2Þj1 and ð1þ 2Þj2 intersect such that mixed (1þ 2) bubbles can coexist there with either of
the pure phases. The insets give a few examples showing the convexity of the grand potential Ωðn−Þ and the tangential constructions for
the parameters indicated by the arrows.
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the nonquadratic part of EB, the pinch areas (curved
triangles in Fig. 2) are, in fact, realizations of yet another
scenario where Ωðn−Þ acquires a concave-convex-concave
configuration and allows for two separate tangential
constructions (see the insets in right upper and lower
panels in Fig. 2). Note that this scenario becomes more
probable with decreasing D.
Quite a few currently available ultracold mixtures are

suitable for the observation of mixed bubbles. For instance,
the mixture of 41K (component 1) and 39K (component 2)
atoms both in hyperfine states F ¼ 1, mF ¼ 0, is charac-
terized by a 2–2 Feshbach resonance at B ≈ 60 G [26], in
the vicinity of which the other scattering lengths equal

að3dÞ11 ≈ 65a0 and að3dÞ12 ≈ 174a0 [27]. Neglecting the mass
imbalance, the MF miscible-immiscible threshold is thus

achieved by tuning að3dÞ22 to the value ðað3dÞ12 Þ2=að3dÞ11 ≈ 470a0
corresponding to α ≈ 2.7 (explaining our choice of α in
Fig. 1). Another example, the 174Yb-7Li mixture studied in
Ref. [28], is among the most mass imbalanced. This
mixture can be tuned near the MF miscible-immiscible
threshold at B ≈ 650 G thanks to the 7Li resonance
at B ≈ 700 G.
In contrast to self-trapped liquid droplets, mixed bubbles

are pockets trapped inside a gaseous medium, which
requires an external trapping. However, the trap should
be sufficiently flat in order not to interfere with the subtle
MF-BMF competition at the heart of the mixed-bubble
physics. We leave this point for future studies. Other open
questions are the shape of finite-size bubbles, their dynam-
ics, excitation spectra, and superfluid properties. Again, in
contrast to the droplet case, bubble characteristics should
depend on the velocity with which they move through the
host gas. This may become a route toward probing
Andreev-Bashkin physics [29] and other BMF effects.
That the mixed-bubble region widens with η suggests
further studies of strongly interacting regimes, particularly
for D ¼ 1, where large η is not generally associated with
enhanced losses.
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