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Topological Rainbow Concentrator Based on Synthetic Dimension
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Synthetic dimension provides a new platform for realizing topological photonic devices. Here, we
propose a method to realize a rainbow concentrator of topological photonic states based on the synthetic
dimension concept. The synthetic dimension is constructed using a translational degree of freedom of the
nanostructures inside the unit cell of a two-dimensional photonic crystal. The translational deformation
induces a nontrivial topology in the synthetic dimension, which gives rise to robust interface states at
different frequencies. The topological rainbow can trap states with different frequencies, controlled by
tuning the spatial modulation of interface state group velocities. The operation frequency as well as the
bandwidth of the topological rainbow can be easily tuned by controlling the band gap of the photonic
crystal. The topological principle can be applied to photonic crystals of any symmetry and arbitrary

material composition, as long as a complete band gap exists. This Letter provides a new and general scheme
for the realization of a topological rainbow concentrator and will be useful for the development of

topological photonic devices.
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Rainbow trapping, which disperses and traps states with
different frequency components at different spatial posi-
tions [1], is useful for applications that require temporary
storages of light [2], enhanced light-matter interaction [3],
and frequency routing [4,5]. However, the existing designs
of rainbow trapping only realize the function of splitting the
light signal to different positions without concentrating
weak signals. Here, we introduce the concept of the
rainbow concentrator, which can collect weak signals
and map different frequency components to different spatial
locations. Compared with traditional concentrators using
plasmonic structures [4,6] or transformation optics [7-9],
which either work in a narrow bandwidth or exhibit no
frequency resolution or both, a rainbow concentrator works
at multiple frequencies and hence greatly enhances the
capability of a single photonic device. Moreover, there is
intrinsic loss for plasmonic structures. As for transforma-
tion optics system, a slight deviation from the designed
parameters usually severely compromises the functionality.
It is desired to develop a novel method to construct rainbow
concentrators.

In recent years, topological concepts offer a platform for
discovering new physics and a new paradigm for designing
next generation devices. Motivated by the advances made
in condensed matter physics, there has been a recent surge
in attempts to realize topological states in acoustic,
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mechanical, microwave, and optical systems [10-14]. In
the realm of topological photonics, initial attention mainly
focused on realizing unidirectional surface modes [15,16].
Various implementations successfully demonstrated the
robustness of topological optical states against disorder,
leading to new possibilities in designing photonic devices
whose functionalities are topologically protected [17,18].
More recently, topological properties have also been
studied in systems with additional degrees of freedom,
supplementing the apparent geometrical dimensions. Such
additional degrees of freedom, frequently referred to as
“synthetic dimensions,” expand the realm of topological
photonics, as it breaks the constraint that the dimension of a
physical system should be equal to or smaller than the
geometrical dimension. It enables the investigation of
higher-dimensional physics in two-dimensional photonic
chips [19-21], simplifies the photonic structure [22], and
brings new opportunities in manipulating the internal
degrees of freedom of light [23,24].

Here, we realize a topological rainbow concentrator by
constructing a synthetic dimension. Our system comprises
an interface formed by a two-dimensional photonic crystal
(PC) with a square lattice on one side and the same PC with
translational deformations on the other. Our device can
concentrate weak signals and distribute different frequency
components of topological states to different locations

© 2021 American Physical Society
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FIG. 1. (a) Schematic diagram of the structure with dielectric
columns (blue) in a square lattice surrounded by air. (b) The
dispersion bands of the TM mode bulk states with a complete
band gap (orange stripe). (c) Zak phase evolution as a function of
& The torus is constructed by gluing the equivalent edges.
(d) Dispersion bands of the TM interface states. The gray regions
denote the projected bulk bands.

along the interface, enabling frequency routing in a real
space. The topological principle that ensures the robustness
of our device is interpreted by introducing a synthetic
dimension. Moreover, this device only requires common
dielectric optical material and can surpass the limit set by
the intrinsic loss in plasmonic systems. The principle
discussed here is free of material restriction and can be
easily generalized to other wave systems, including but not
limited to acoustics, elastic waves, and also cold atoms,
which can demonstrate similar physics. Our Letter can
bring new insight in designing photonic devices with
topologically robust functionalities and facilitates applica-
tions such as photonic routers, photonic information
processing, and light storage.

We first consider a typical dielectric PC comprising a
square lattice of dielectric cylinders embedded in air. The
eigenstates can be labeled by the Bloch wave vector
(k. k), forming a 2D parametric space. We now define
the position of the cylinders relative to the surface of the PC
and introduce a displacement parameter ¢ in the x direction
[as defined in Fig. 1(a)]. This translational parameter £ will
be regarded as a synthetic dimension. The parameter &
and the Bloch wave vectors (k,, k,) together form a 3D
parametric space (k,, k,, £). Because the three para-
meters are all periodic, the periodic gauge can be
imposed on eigenstates, which is |y, (k,+27/a. k,.£)) =
(K Ky -2/, €)) =y (K Ky E40)) =y (K Ky ),
where |y, (k.. ky, £)) denotes the eigen Bloch state with
parameter (k,, ky, £) and band number 7. If we fix k,, the

two parameters (k,, £) form a torus and the eigenstates of
this 2D subsystem are topologically nontrivial. Here the
topology is characterized by Chern numbers, which are the
winding numbers of the one-dimensional Zak phase as &
changes by one lattice constant. For each ¢, the Zak phase

of the nth band 6 (k,, &) is defined as [25]

y(ky, ky, €))dk
(1)

where |u,(ky, ky, &) = e |y, (ky, ky, ) is the peri-
odic part of the Bloch state of the nth band with parameter
(ky, ky, £). When k, is fixed and ¢ varies from —a/2 to
a/2, the winding of Zak phase divided by 2z gives the
Chern number of this band [26], as is expressed in Eq. (2),

a g a
HS'IZ k)(kyv é) = /__( n(kxv kw 5) 8](

1 a/2 A
Culk) =5, | 0k 8)de (@)

For a fixed k,, the 2D PC is effectively reduced to a 1D
system. In 1D PCs, the Zak phase is equivalent to the Wannier

center by the relation o7 =2r/a [* x|W,(x)|>dx, where
W, (x) denotes the Wannier function of the nth band [25,27].
The Zak phase of the 2D PC with a fixed k, can be regarded as
the center of a “quasi-one-dimensional” Wannier function,
which is defined as a partial Fourier transformation of
the Bloch functions in the x direction, as is shown in
Supplemental Material, Sec. I [28]. When & changes from
0 to a, the center of the quasi-one-dimensional Wannier
function will also change by a lattice constant, so that the Zak
phase changes with the lattice translational deformation as
indicated in Eq. (3). We note here that synthetic dimension
has been introduced previously (see, in particular, Ref. [32]),
however, a rainbow concentrator cannot be realized with the
system discussed in Ref. [32], wherein each sample only
exhibits one isolated surface state,

O™ (ky, &) = 67 (ky, 0) + —/;(mod 21). (3)

For a fixed k,, as we gradually increase ¢ by a, Eq. (3)

indicates that 6" (ky, &) increases by 27z. We then see that
the Chern number of each isolated band is equal to 1. In a
more general setting, which involves multiple bands, the total
Chern number characterizing a gap is equal to the sum of the
Chern number of the bands below that gap, which also
provides a method to construct an artificial system with a
desired value of Chern numbers. This topological character-
istic is constructed by a translational degree of freedom of the
microstructure within the unit cell and, as such, it exhibits
little restriction on the material and the space group sym-
metry. In the Supplemental Material [28], we show that the
same principle can be applied to other lattices.
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The nontrivial topology in the subspace (k,, &) naturally
leads to interface states by joining the undeformed structure
and the deformed structure together, as illustrated in
Fig. 1(a). The square unit cell contains a dielectric cylinder,
which has a refractive index n = 2.4 (common dielectric
materials have refractive indices ranging from 1.3 to 3.5 in
optical frequencies), and the radius is r = 0.2715a, where
a is the lattice constant. The bulk dispersion of the
transverse magnetic (TM) modes are shown in Fig. 1(b).
While we focus on the TM modes, the transverse electric
modes can be studied in a similar way. As shown in
Fig. 1(b), there is an absolute band gap from 0.34 ¢/a to
0.41 ¢/a. The band gap can be enlarged by increasing the
dielectric constant or optimizing the radius of the cylinder.
We numerically calculate the Zak phase evolution of the
first bulk band by using the Wilson loop approach when
changes by one lattice constant [33]. As shown in Fig. 1(c),
when £ changes by a period, the Zak phase changes by 2.
This conclusion holds for all fixed k, (the component of
wave vector in the y direction) and is consistent with
Eq. (3). Because of the nontrivial topology in the subspace
(ky, &), i.e., each isolated band with a fixed k, possesses a
Chern number 1, a series of £-dependent interface states can
be constructed when ¢ changes from 0 to a. For each k,,
there is always a range of £ in which one interface state can
be found in the gap, which is ensured by the bulk-edge
correspondence [34,35]. The band dispersions of interface
states as a function of k, are shown in Fig. 1(d). Analogous
to the topological pumping [34], the frequencies of
dispersion bands of interface states decrease from the
second bulk band to the first bulk band when & changes
by one lattice constant.

After obtaining the dispersion of the interface states, we
can study how the translational degree of freedom within
the unit cell controls the regions of existence and the group
velocities of the interface states. In Fig. 2(a), the group
velocities of the interface states are plotted as a function of
frequency and the synthetic dimension. Here, we consider
the frequency range of the complete band gap region for
rainbow design, where the light can only propagate along
the interface. The left and right dark regions in Fig. 2(a)
represent the regions where no interface states exist, and in
the middle bright region, the interface states exist. The
color in the middle bright region indicates the group
velocity of the interface states. The two cyan dashed lines
mark the boundaries of the three regions, which correspond
to the minima or maxima of the dispersion bands of a
certain £. As is shown in Fig. 1(d), the minima and
maxima of dispersion bands correspond to states with
k, = 0 and k, = r/a, respectively. The four critical points
E.1s o, €3, and &4 are the intersectional points of the
boundaries of the regions and the edge of band gap, which
partition the synthetic dimension into five intervals. In the
interval [0, £.1] or [£.4, al, interface states cannot exist; in
the interval [£.,, &3], interface states with all frequencies
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FIG. 2. (a) The group velocity distribution shown in the
dispersion diagram of synthetic space. The cyan dotted lines
denote the boundaries between the regions where interface states
exist and do not exist. (b) The schematic diagram of topological
rainbow concentrator, with light coupled in using a dielectric
waveguide. (c) Normalized energy density distributions along the
interface. The blue and gray parts are regions of existence and
nonexistence of interface states. (d) Electric intensity distribu-
tions of the interface states corresponding to the frequencies
marked in roman numbers in (c).

over the complete band gap can exist; and in the interval
[Ec1, €] and [E.3, 4, only the interface states with a
certain frequency range can exist, and the frequency range
will change when & changes.

Now, instead of a fixed k,, which requires a well-defined
periodicity along the y direction in 2D PCs, we modulate &
in the y direction as shown in Fig. 2(b). The parameter & of
the nth row (in the y direction) is denoted as &(n). The
simplest way is the linear modulation of &,

{n) =y =&)n=1D/IN=1) + ¢, (4)

where £, and &y are the translational parameters of the first
and last layers. Other constructions for modulation of &(n)
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of the maximal intensity over the incident plane wave E,,/ E,. (c) The electric intensity distribution of the peaks in (b), normalized by the

intensity of incident plane wave E.

are also feasible; for example, the sinusoidal modulation of
¢ is discussed in detail in Fig. S2 in the Supplemental
Material [28]. The spatial modulation of the &(n) will shift
each row of the lattice laterally, while the row shifting will
deform the square lattice of the right-hand side PC, and the
band gap becomes wider with the introduction of synthetic
dimension (see Fig. S3 in the Supplemental Material [28]
for the dispersion bands of the deformed structure). If the
spatial change of £ is smooth and mild enough, the structure
is locally equivalent to that with homogeneous displace-
ment as in Fig. 1(a). From Fig. 2(a), we see that, for each
frequency, there are two extreme values of £ at which the
system no longer supports any interface state. Combined
with Eq. (4), we can obtain the y coordinate where the local
effect £ no longer supports any interface state. This relation
is shown in Fig. 2(c) with the white curve dividing the
phase space into two regions: blue with interface states and
gray without interface states. If the parameters &, &y
satisfy &, < & < €5 < &y, light with frequency inside
the band gap can be coupled into the structure and will
propagate along the interface, until it reaches the position
where the interface states are no longer supported locally.
In our calculation, the light is coupled in through a
dielectric waveguide with the same material of the dielec-
tric column and a width equal to the lattice constant. The
critical points are £,y = 0.10a, &, = 0.45a, &5 = 0.48a,

£.4 = 0.97a, and the parameters of the first and last layers
are £; = 0.45a and £y = 0.7a. In Fig. 2(c), we show the
normalized energy density distributions along the interface.
The result shows that the lights of different frequencies stop
at different positions, as predicted by the blue and gray
regions. The electric intensity distributions around the

interface are shown in Fig. 2(d), where the roman numbers
correspond to the frequencies marked in Fig. 2(c).

Figure 2(c) shows that there is a maximum value of £ at
which the surface wave with a given frequency will stop
propagating. Similarly, there is a minimum value of £ above
which the surface wave starts propagating. Hence, if we
construct an interface with a linear modulation of &(n)
with parameters &, £y and the modulation satisfying
& < &, Ey > &4, light waves of all frequencies are
trapped in the region where the interface states exist.
Since the maximum and minimum values of & also
depend on the frequency [see Fig. 2(a)], the position where
an interface state is concentrated is a function of
frequencys; i.e., we have thus realized a topological rainbow
concentrator.

The topological rainbow concentrator can be excited
from the left-hand side of the sample as shown in Fig. 3(a)
by a plane wave source. Here, each side consists of four
lattices away from the surface. Figure 3(b) shows the
spectrum of enhancement ratio of the maximal electric
intensity of the rainbow (denoted by E,,) over the electric
intensity of the incident plane wave source (denoted by Ej)).
The peaks correspond to the localized eigenstates of the
system, the electric intensity of which is shown in Fig. 3(c).
Figure 3(c) shows the regions of the eigenstates are
different for different frequencies. Meanwhile, the overlaps
between modes can be greatly reduced by engineering the
lattice (see Supplemental Material, Secs. IV and V) [28].
Moreover, the number of peaks is controlled by N in
Eq. (4); the larger N is, the more peaks we have, and the
enhancement ratio can be greatly enhanced by increasing
the number of lattices on each side of the surface. As the
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topology of (k,, £) space has no restriction on the geo-
metric symmetry and materials, the discussion above is also
applicable to different lattice types and different materials,
as long as the dispersion band of the bulk photonic crystal
has a complete band gap. In addition, the frequencies of
some conventional defect modes can be tuned by changing
some parameters, and some of them are highly custom-
izable. Most of these highly customizable modes can be
converted into topological ones with proper design by
adopting our method through constructing a synthetic
dimension with translation from zero to one lattice con-
stant. In the Supplemental Material, Secs. IV and V [28],
the topological rainbow concentrators constructed by
triangular lattice and honeycomb lattice are discussed,
and the design and modulation of the operation frequency
range are discussed in the Supplemental Material, Sec. VI
[28]. Moreover, topological pumping is robust against
disorder [36] and random scaling of geometry (see
Supplemental Material [28], Sec. VII for more details).
In conclusion, we proposed a topological rainbow
concentrator using the translational degree of freedom of
the inclusions inside the unit cell of 2D PCs. The synthetic
dimension induces nontrivial topology in the 2D subspace
(k, &), analogous to topological pumping. The nontrivial
topology determines the existence of interface states at the
boundary. The properties of topological rainbow can be
controlled by tuning the group velocities of interface states.
The rainbow structures are immune to disorder in the bulk
and can break the usual restrictions of narrow operation
bandwidth or single operational frequency, which are
typical limiting factors of previous fixed photonic lattices.
The operation principle does not depend on lattice sym-
metry or material properties, and so the synthetic dimen-
sion idea can be applied to just about any type of PCs. The
topological rainbow concentrator can be realized in near
infrared and visible light regions and provides a new
platform for the realization of topological photonic devices.
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