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We report on a theoretical analysis of the Floquet topological crystalline phases in driven one-
dimensional photonic crystals mediated by second-order optical nonlinearity. We define the photonic Berry
connection and photonic polarization in such systems using different methods and prove their equivalence.
We present two examples of topological phase transitions in which two Floquet bands cross and open new
gaps under the driving field. Finally, we analyze the physical consequences of each topological phase
transition by examining edge states and filling anomalies. Our study presents routes toward the realization
of robust reconfigurable photonic cavities with topologically protected light confinement.

DOI: 10.1103/PhysRevLett.126.113901

Photonic topological phases are classes of solutions to
Maxwell’s equations that can support robust boundary
states protected by the topology of the system’s bulk band
structure [1–3]. The interplay between the existence of
states at the system’s boundary and the existence of
nontrivial topology in the bulk is known as the bulk-edge
correspondence [1]. For example, Chern insulators, which
exhibit the quantum anomalous Hall effect supporting
unidirectional chiral edge modes on their boundaries, have
been demonstrated in two-dimensional (2D) photonic
crystals (PhCs) [4–6]. Additionally, systems with Weyl
points exhibit Fermi arc dispersions on their surfaces,
which have been demonstrated in three-dimensional
PhCs [7] and photonic lattices [8]. In practice, topological
photonic systems are of interest because their robust optical
properties can potentially lead to novel devices such as
delay lines, isolators, and circulators [1–3] that are resilient
to perturbation or fabrication disorder. Most systems
studied so far are limited to solutions to Maxwell’s
equations in static linear media. Not until recently have
there been examples of Floquet topological phases in
driven nonlinear optical systems [9–11].
Electric polarizations in crystals have been linked to the

Berry phase of the electronic ground state, which provides a
cornerstone for the modern theory of polarization [12]. For
an insulator, the crystalline symmetries of the system can
result in discrete values of the electronic polarization
each associated with a unique topological crystalline phase
[13–15]. For example, in one-dimensional (1D) systems
with inversion symmetry, there exist two topologically
inequivalent ground states that are distinguished by the
quantized bulk polarizations [16]. Nontrivial edge states
carrying fractional charges can be found at the interface
between these two topologically distinct phases [14].
Similarly, interfaces between photonic systems can also
support topological edge states, which may find practical
applications. In particular, 1D photonic systems with C2

symmetry can support localized edge states, just like the
electronic topological dipole phase. These edge states
confine light and can be used as robust cavities for lasing
[17,18] and for enabling strong light-matter interactions [19].
In this Letter, we study the Floquet topological crystal-

line phases in 1D nonlinear PhCs subject to temporal
modulation. We show that topological phase transitions can
occur when the gaps between Floquet bands are closed and
reopened by an external driving field. Specifically, we start
by defining the Berry connection and Zak phase [20,21]
under the framework of the Floquet eigenvalue problems of
Maxwell’s equations. In contrast to the Floquet topological
phases in electronic systems [22], which are defined
through Hermitian eigenvalue problems, our formulation
is defined through generalized non-Hermitian eigenvalue
problems. As a consequence, the eigenvalues in these
systems are in general complex, and the particle numbers
may not be conserved (e.g., the signal and idler photons in
an optical parametric amplifier [23]). We can lay out a
simple criterion that guarantees our eigenvalues to be real
[10], and the bulk-edge correspondence applies. On the
other hand, the left and right eigenvectors are no longer
related by complex conjugation owing to the non-
Hermiticity of the system. Accordingly, the generalized
Berry connection needs to be defined in different ways
[24]. We demonstrate the equivalence of these definitions in
the presence of C2 symmetry (see Section I of the
Supplemental Material [25]). Similar to the Hermitian
case, we further show that the Zak phase of the non-
Hermitian Floquet bands is quantized in the presence of C2

symmetry and can be evaluated using the symmetry
eigenvalues at high-symmetry points in the Brillouin zone
(BZ) [14]. Accordingly, our method to drive topological
phase transitions is to invert two Floquet bands with
different C2 indices at the BZ high-symmetry points by
engineering the couplings of two Floquet bands through the
appropriate optical nonlinearity and driving field.
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We show two specific examples of topological phase
transitions and demonstrate their physical significance,
which resembles the electronic topological dipole phases
with nontrivial polarizations. Here, we note that the mode
density in photonic systems, defined as the integrated
spectral local density of states within a band continuum,
is the photonic analog to the charge density within a band in
electronic systems [28]. As such, we define the polarization
of a photonic band as the first moment of the mode density
in the entire band and the filling anomaly as the anomalous
depletion or overfilling of the mode densities within the
band continuum. The first example engineers the phase
transition between a trivial static phase and a polarized
Floquet phase, leading to the discovery of systems with
new topological edge states as well as filling anomalies
with a discrete packet of energy in the confined mode
[14,15]. The second example engineers a phase transition
between a polarized static phase and an anomalous Floquet
phase where we show that new edge states may appear but
without filling anomalies. By tuning the system parameters,
we find that the anomalous phase may become topo-
logically indistinguishable from a trivial phase, even
though no additional gap closing is involved in the
parameter tuning process. This highlights one of the major
differences between anomalous Floquet phases in our 1D
system and 2D Chern insulators [29–31].
We start by formulating the Floquet eigenvalue problem

and defining the 1D topological invariants. The nonlinear
PhC under study is schematically shown in Fig. 1(a), which
consists of alternating layers of a second-order nonlinear
material, LiNbO3, with a linear permittivity of εxx ¼ εyy ¼
4.97 and εzz ¼ 4.67, and a linear material, Si, with
ε ¼ 12.25. Both materials are chosen because they are
commonly used in integrated photonics. In the visible and
near-infrared regime of interest, LiNbO3 has a large
second-order nonlinear susceptibility of χð2Þzzz ¼ 2d33 ¼
62 pm=V [32], which can lead an appreciable Floquet
gap under moderately strong driving fields. The PhC is
uniform along the y and z directions and has a periodicity of
a along the x direction. The width of the Si layer is
w ¼ 0.6a. The LiNbO3 is x cut and the crystallographic c
axis is parallel to the z axis as defined in the inset. In this
Letter, only transverse-magnetic (TM) modes propagating
along the x direction with field components (Ez, Hx, Hy)
are considered. The static band structure of the four lowest
bands and their corresponding mode profiles are calculated
using a finite-element solver with the band structure shown
in Fig. 1(b). The Zak phase of a TM band is defined as the
integral of the Berry connection over the BZ

θZak ¼
Z
BZ

Akdk ¼ i
Z
BZ

huzkjεzz∂kjuzkidk; ð1Þ

where Ak is the Berry connection and juzki is the Ez
component of the Bloch wave function at wave vector

k ¼ kx. In the presence of the Cy
2 symmetry, which is the

180° rotation symmetry around the y axis in our structure,
the Bloch Hamiltonian obeys Cy

2ĤkC
y
2
−1 ¼ Ĥ−k. Based on

the symmetry operation detailed in Section I of the
Supplemental Material [25], the Zak phase is related to
the eigenvalues of theCy

2 operator at the center (Γ) and edge
(X) of the BZ as [14]

eiθZak ¼ Cy
2ðΓÞCy

2ðXÞ: ð2Þ

As theCy
2 eigenvalues at Γ and X are�1, the Zak phases are

quantized as 0 or π, modulo 2π. Accordingly, the polari-
zation of a band, px ¼ θZak=2π, is quantized to be either 0
(topologically trivial) or 0.5 (nontrivial), modulo 1. For the
second (third) band, shown in red (blue), the Cy

2 eigen-
values at both Γ and X are −1 (þ1), meaning the band is
topologically trivial with px ¼ 0.
Next we show how topological phase transitions can be

induced by external driving fields in the 1D nonlinear
PhCs. A monochromatic driving field EðΩÞ ¼ Ed

z cosðΩtÞẑ
impinges from the y direction and periodically modulates
the permittivity of LiNbO3 via the electro-optic effect,

FIG. 1. Floquet topological phase transition in a driven 1D
PhC. (a) Schematic of a 1D nonlinear PhC that consists of
alternating layers of Si and LiNbO3. An external driving field
EðΩÞ couples different TM modes via the electro-optic effect of
LiNbO3. (b) The dispersion of the four lowest TM bands is
calculated. The Cy

2 eigenvalues (�1) of the mode profiles at the
BZ center (Γ) and edge (X) are evaluated. The second (red) and
third (blue) static bands, both topologically trivial, are coupled
via the external driving field. (c) Under the driving field, Floquet
bands are created and a band inversion is induced between two
Floquet bands, i.e., band j3;−1i and j2; 0i at Γ. After inversion, a
Floquet gap is opened (yellow) and both Floquet bands have
topologically nontrivial bulk polarizations.
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ΔεzzðtÞ ¼ 2χð2ÞzzzEd
z cosðΩtÞ. In contrast to the static system,

the driven system only has a discrete translation symmetry
in time. Accordingly, each static band jji is transformed
into a set of Floquet bands jj; mi whose frequencies are
separated bymΩ (withm an integer), as shown in Fig. 1(c).
The Floquet eigenvalue equation is derived fromMaxwell’s
equations by considering the time-varying permittivity [10]
(see Section II of the Supplemental Material [25] for details
of the derivation). The Floquet Hamiltonian assumes a
tridiagonal form where couplings between adjacent Floquet
bands arise from the second-order nonlinearity. Couplings
between nonadjacent Floquet bands (jΔmj > 1) are also
possible via higher-order nonlinear optical processes
involving more pump photons. Such processes are typically
much weaker than the second-order nonlinear processes
and are not considered in this Letter. Though their frame-
works are similar, the 1D system here and the 2D Floquet-
Chern insulator in [10] represent different types of
topological phases and are manifested by different physical
consequences. For simplicity, we consider the Floquet
eigenvalue problem within the sub-space spanned by the
second and third static bands only, although more bands
can also be taken into account under this framework. Under
the rotating wave approximation, the eigenvalue equation
that couples two Floquet states j2; 0i and j3;−1i at each kx
is given by

�
ω2 0

−ΩV†
23 ω3 −Ω

��
c2;0
c3;−1

�
¼ ϵ

�
1 V23

V†
23 1

��
c2;0
c3;−1

�
:

ð3Þ

Here, ϵ is the Floquet eigenvalue, also known as the
quasienergy, and V23 ¼ h2; 0jχð2ÞzzzEd

z j3;−1i=2 is the cou-
pling strength between modes on bands j2; 0i and j3;−1i at
the same kx arising from the nonlinearity. Solving Eq. (3) at
each kx yields the quasienergy spectra ϵðkxÞ, as shown in
Fig. 1(c). Because of the conservation of photon numbers,
the Floquet eigenvalues are always real when ω2 and ω3 are
both at positive or negative frequencies [10].
A topological phase transition is induced by inverting

Floquet bands j2; 0i with j3;−1i. For a small driving
frequency Ω, Floquet band j2; 0i is always at a lower
frequency than j3;−1i, separated by a quasienergy gap. As
Ω increases to the critical value of Ωc ¼ ω3ðΓÞ − ω2ðΓÞ,
the Floquet gap is closed at Γ, where the coupling strength
V23 between the two bands vanishes due to the Cy

2-
symmetry mismatch. As Ω further increases, the band
inversion is completed, and a new Floquet gap is opened
with the gap size proportional to the magnitude of the
coupling strength jV23j. More importantly, both Floquet
bands become topologically nontrivial after the band
inversion. The Cy

2 indices switch at Γ, and accordingly,
the Zak phases of both bands change to π, indicating a
nontrivial polarization for each band. This topological
phase transition is further confirmed by directly integrating

the Berry connection over the BZ to calculate the Zak phase
[33] (see Section II of the Supplemental Material [25] for
more details of the calculation).
Next we present the physical consequences of this

topological phase transition from a trivial static phase to
a nontrivial polarized Floquet phase. Specifically, we show
that the driving field induces new edge states accompanied
by an anomalous depletion or overfilling of mode densities
within the bands, as schematically shown in Fig. 2(a). In the
case of the trivial static phase, for a finite system with N
unit cells, each bulk band becomes a set of N modes
representing the bulk continuum (schematically shown in
green). Under the driving field, the bulk bands undergo a
transition into the polarized Floquet phase with nontrivial
polarizations. As a result, two degenerate topological edge
states emerge inside the Floquet gap, marked as red and
blue circles. These two edge states have contributions from
the bulk states in the bands above and below the gap.
Consequently, each bulk continuum is left with only N − 1
states, leading to a filling anomaly that is robust against
perturbations preserving C2 symmetry. In comparison,

FIG. 2. Trivial static to polarized Floquet phase transition.
(a) Schematic drawing of drive-induced edge states (red and blue
circles) and filling anomalies that do not exist in the static system.
(b) The finite system consists of a PhC with 100 unit cells
terminated by PECs, shown in brown. The width of the air gaps g
can be modified. (c) Numerical simulation results of the energy
spectrum of the trivial static finite system, where both band
continua consist of 100 states, corresponding to bands j2i and j3i
in Fig. 1(b). (d) Under an external driving field, two edge states
(blue and red circles) emerge in the Floquet gap (shaded in
yellow) corresponding to states 100 and 101. The mode profiles
confirm that these two states are localized at the top and bottom
boundaries.
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while edge states may also appear in topologically trivial
systems by tuning the boundary condition, such edge states
have contributions solely from the bulk states below or
above the gap, leaving N − 2 states in the bulk continuum,
and this does not lead to filling anomalies.
We numerically demonstrate the topological edge states

and filling anomalies by solving the Floquet eigenvalue
problem for a finite PhC that consists ofN ¼ 100 unit cells,
as shown in Fig. 2(b). The unit cell has the same parameters
as in Fig. 1(a). The finite PhC is placed between two perfect
electric conductors (PECs), which are topologically trivial.
Two air gaps with thickness of g ¼ 0.2a are placed between
the PhC and PEC. As shown in Fig. 2(c), the energy
spectrum of the finite system consists of two bulk continua,
each with 100 eigenstates, separated by an energy gap
(shaded in gray). These results are consistent with the bands
j2i and j3i in Fig. 1(b). All 200 bulk states are mixed under
a driving field at the frequency of Ωa=2πc ¼ 0.1717. For
the ease of presentation, a strong driving field of
Ed
z ¼ 20 GV=m is used here in our calculation; however,

a much lower field below the damage threshold of LiNbO3

of ∼1 GV/m [32] is adequate to demonstrate the physical
consequences in practice.
The quasienergy spectrum is shown in Fig. 2(d), where a

Floquet gap (shaded in yellow) is opened by the driving
field. Additionally, two edge states, corresponding to states
100 and 101, appear in this Floquet gap. Accordingly, both
bulk continua below and above the Floquet gap contain 99
states, which demonstrates the presence of a drive-induced
filling anomaly in our system. The localization of the edge
states is confirmed by their mode profiles jHyj, as shown in
the right panel. The energy degeneracy between these two
edge states is protected by the Cy

2 symmetry of the system.
Because of the lack of chiral symmetry in Maxwell’s
equations around this gap frequency, the energy of the
two edge states is not pinned at the center of the gap;
instead it can be shifted by tuning system parameters such
as the air gap width g. However, as long as Cy

2 symmetry is
preserved, the filling anomaly is always present, even if the
two edge states merge into the bulk continuum above or
below the gap (see Section III of the Supplemental Material
[25] for details).
Next we present a different kind of topological phase

transition from a polarized static phase to an anomalous
Floquet phase, which is shown schematically in Fig. 3(a).
The new unit cell shares the same materials and orientation
as the previous one, with the only difference being that the
width of the Si is reduced to w ¼ 0.2a. (Simulation results
of the dispersion of the lowest static TM bands are shown in
Section II of the Supplemental Material [25].) The
Cy
2 indices at Γ and X for the first, second, and third bands

are ðþ1;þ1Þ, ð−1;þ1Þ, and ðþ1;−1Þ, respectively.
Accordingly, the first band is topologically trivial with
px ¼ 0, while the second band (j2i) and the third band (j3i)
have nontrivial polarizations of px ¼ 0.5. The calculated

energy spectrum for a finite system with 100 unit cells is
shown in Fig. 3(b). Two edge states appear inside the static
energy gap due to the nontrivial polarization below the gap,
labeled by the triangles in Fig. 3(b). Under a driving field at
the frequency of Ωa=2πc ¼ 0.2099, a band inversion is
induced between j2; 0i and j3;−1i at Γ. After the band
inversion, a Floquet gap is opened by the driving field as
shown in the quasienergy spectrum in Fig. 3(c). Judging
from the Cy

2 indices, both Floquet bands are topologically
trivial with px ¼ 0. However, along with the edge states
inherited from the static setting (triangles), this Floquet
system exhibits new edge states within the Floquet gap,
which are labeled by circles in Fig. 3(c). The localization of
static (black lines) and drive-induced edge states (blue and
red lines) is confirmed by their mode profiles shown in
Fig. 3(d). Similar phenomena have been observed in 2D
systems, known as the anomalous Floquet phase [29–31],

FIG. 3. Polarized static to anomalous Floquet phase transition.
(a) Schematic drawings of static edge states (triangles), drive-
induced edge states (circles), and energy spectra of the polarized
static phase and the anomalous Floquet phase. (b) Numerical
simulation results of the energy spectrum of a static finite system
with 100 unit cells in the polarized phase, exhibiting edge states
(triangles) in the static energy gap (shaded in gray). (c) Under a
driving field, two new edge states (red and blue circles),
corresponding to states 99 and 100, emerge in the Floquet gap
(shaded in yellow), while the static edge states (states 199 and
200), are preserved (triangles). The upper panel shows an
enlarged view of the spectrum within the dashed box. (d) Mode
profiles of the static edge states (199 and 200), shown in black
lines, and drive-induced edge states (99 and 100), shown in red
and blue lines, which are all localized at the boundaries.
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which support gapless edge states above and below Floquet
bands with zero Chern numbers.
We note that filling anomalies, not edge states, are the

key characteristics of topological phases in 1D. Therefore,
we further study the 1D anomalous Floquet phase from
the filling anomaly point of view and show that it is
topologically indistinguishable from a 1D trivial phase.
Specifically, we start from the spectrum of the finite PhC
in Fig. 3(c), where each Floquet band continuum consists
of 98 states. By changing the air gap width g, while
maintaining the Cy

2 symmetry and keeping bulk energy
gaps open, we show that the two pairs of edge states can
be merged into the upper and lower continua respectively.
After this operation, both Floquet band continua consist of
100 states, which is compatible with the unit cell number
and does not show a filling anomaly (see Section III
of the Supplemental Material [25] for more details). This
is in contrast to the anomalous Floquet phase in 2D
where the edge states can only be eliminated by gap
closing [31].
To summarize, we analyze the Floquet topological

crystalline phases in driven 1D nonlinear PhCs, which
are described by generalized non-Hermitian eigenvalue
problems. Through the study of two types of topological
phase transitions, we elucidate the definition of topological
invariants and their physical consequences in these sys-
tems. Our formalism can be further generalized to compute
quadrupole moments and to study high-order topology in
driven nonlinear systems. Our framework is also applicable
to other nonlinear systems without particle conservation,
such as phonons and polaritons. The presented 1D Floquet
topological phases may enable reconfigurable cavities with
applications in on-chip Q-switch lasers and light-wave-
controlled strong light-matter interactions (see Section V in
the Supplemental Material [25] for details).
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