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Inspired by a recent experiment by Steinhauer and co-workers, we present a simple model which
describes the formation of an acoustic black hole in a Bose-Einstein condensate, allowing an analytical
computation of the evolution in time of the corresponding density-density correlator. We show the
emergence of analog Hawking radiation out of a “quantum atmosphere” region significantly displaced from
the horizon. This is quantitatively studied both at T ¼ 0 and even in the presence of an initial temperature
T, as is always the case experimentally.
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Hawking black hole (BH) evaporation [1] can be under-
stood as a pairs creation process in which a member of the
pair is created outside the horizon constituting the thermal
radiation emitted by the BH. The other member, called par-
tner, is created inside the horizon and has negative (Killing)
energy. The members of the pair are entangled and this leads
to correlations. The presence of a causal horizon in a BH
prevents a direct measurement of these correlations. This
kind of particle-partner creation mechanism is, however, not
peculiar to BHs [2]. The same process is at work in various
others physical settings (called analog BHs), in particular in
flows that from subsonic turn to supersonic (for a review, see
Ref. [3]). Sonic BHs constructed from Bose-Einstein con-
densates (BECs) are the most studied examples [4].
In this case it has been predicted that the particle-partner

correlations of Hawking radiation will be manifested by
the presence of a stationary peak which appears at late time
after the formation of the sonic horizon in the equal time
density-density correlator when one point is taken outside
the horizon and the other inside [5,6]. This striking feature
has indeed be experimentally observed by Steinhauer and
co-workers [7,8] and this is the most stringent evidence of
Hawking-like (phonons in this case) radiation in a BEC.
Having an (almost) complete comprehension of stationary
analog BHs, research is now moving forward trying to
understand what happens in the dynamical formation of
time-dependent horizons [9,10]. This is a new era in analog
gravity where one is not just satisfied to find the stationary
Hawking radiation, but one wants to understand where and
when this radiation emerges. For gravitational BHs it has
been argued by various authors starting from Unruh and
others [11–15] that Hawking particles emerge from a region
significantly displaced from the horizon which has been
named “quantum atmosphere” byGiddings [13].Wewill see
that our analysis will give a strong support to it.

Our work is inspired by a recent work of Steinhauer and
co-workers who have reported on an experiment which was
able to follow through correlations measurements the time
evolution of a BEC BH [9]. Starting from the formation of
the sonic horizon, they observed the ramp-up of Hawking
radiation to its stationary regime (see the first two phases
in their Fig. 2). The purpose of this Letter is to show how,
with the methods of quantum field theory (QFT) in curved
space, one can describe quite nicely the emergence of
Hawking radiation in a BEC by following the time evolution
of the relevant density correlator toward its stationary
configuration [16]. This is done by using a simple toy
model of sonic hole formation which captures the relevant

FIG. 1. Matching of null coordinates between the t < 0 region,
where the flow is uniform and subsonic, and the inhomogeneous
t > 0 region, with a subsonic (x > 0) and a supersonic (x < 0)
part, representing, respectively, the exterior and the interior of the
sonic hole. The horizon is at x ¼ 0.
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features of the ramp-up and has the advantage of allowing an
analytical treatment which can also be extended to the case
of a nonvanishing ambient temperature of the BEC.
In the spirit of the gravitational analogy [18], phonons in

a spatially one-dimensional BEC can by described by a four
dimensional (4D) massless scalar field δθ̂, representing the
phase fluctuation of the condensate, propagating in an
acoustic metric associated to the one-dimensional (along
the x axis) BEC flow:

ds2 ¼ n
mc

½−ðc2 − V2Þdt2 − 2Vdtdxþ dx2 þ dy2 þ dz2�;
ð1Þ

where VðxÞ is the velocity of the flow and cðxÞ the speed
of sound, nðxÞ is the condensate density and m the mass
of a single atom. The transverse size l⊥ of the condensate
is assumed to be much smaller than the healing length
ξ ¼ ℏ=mc, as it happens in the experimental realization
of Steinhauer. This allows us to treat the system as
effectively 1D.
The field δθ̂ satisfies

□δθ̂ ¼ 0; ð2Þ

where the covariant D’Alambert operator is constructed
from the metric (1). We will be interested in the correlator
of the 1D density fluctuations δn̂ð1Þ which is constructed
from δθ̂ as

δn̂ð1Þ ¼ −
nð1Þ

mc2
ð∂t þ V∂xÞδθ̂; ð3Þ

where nð1Þ ¼ nl2⊥ is the 1D density of the condensate.
Relation (3) holds in the so-called hydrodynamical
approximation which is valid on longitudinal scales much
bigger than the healing length ξ. This approximation is the
core of the gravitational analogy in BECs.
We shall consider the flow directed from right to left at a

constant velocity V (< 0) and whose density n is also
constant. The profile for the speed of sound is assumed to
be the following:

� c ¼ cin t < 0

c ¼ jVjð1þ 2
3
tanh 3κx

2jVjÞ t > 0;
ð4Þ

where cin (>jVj) is a constant and κ is also a constant.
One can vary the speed of sound cð¼ ffiffiffiffiffiffiffiffiffiffiffi

gn=m
p Þ, for

example, by varying the atom-atom interaction coupling
g using Feshbach resonances [19], or as described in
Ref. [8]. We can generalize the model by letting both c
and V vary, as it is the case in the setup of the experiment
described in Ref. [9] (see also Ref. [20]). We believe,
however, that our simple toy model is sufficient to
reproduce at least qualitatively the relevant features
recently observed by Steinhauer and co-workers.
Our choice describes a uniform subsonic flowing con-

densate for t < 0. Instantaneously at t ¼ 0 a sonic BH
forms: the flow remains subsonic for x > 0, while it
becomes supersonic for x < 0. The horizon is at x ¼ 0
and κ is its surface gravity.
For the reasons given before we shall be interested in

the equal time density-density correlator Gð1Þ
2 ðt; x; x0Þ ¼

limt→t0 hδn̂ð1Þðt; xÞδn̂ð1Þðt0; x0Þi which following Ref. [5] we
approximate as

Gð1Þ
2 ¼ nð1ÞðxÞnð1Þðx0Þ

m2c2ðxÞc2ðx0Þ limt→t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2cðxÞcðx0Þ
nð1ÞðxÞnð1Þðx0Þ

s
Dhδθ̂ð2Þδθ̂ð2Þi;

ð5Þ

where D is the differential operator D ¼ ð∂t þ V∂xÞð∂t0 þ
V∂x0 Þ and hδθ̂ð2Þðt; xÞδθ̂ð2Þðt0; x0Þi is the two-point func-

tion of a 2D massless scalar field δθ̂ð2Þ (¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1Þ=mc

p
δθ̂)

propagating in the 2D metric

ds2 ¼ −ðc2 − V2Þdt2 þ 2jVjdtdxþ dx2 ð6Þ

and satisfying

□δθ̂ð2Þ ¼ 0; ð7Þ

where the 2D □ is calculated from Eq. (6). The approxi-
mation used is familiar in QFT in curved space-time when

FIG. 2. Ramp-up of the density correlator (14) for 5 < x < 20,
−20 < x0 < −5, and at four different times: t1 ¼ 1

κ (top left), t2 ¼
2
κ (top right), t3 ¼ 4

κ (bottom left), and t4 ¼ 5
κ (bottom right). Here

and in all the figures that follow, we have plotted the correlator up
to the overall factor ℏnð1Þ=4πm and chosen the values
κ ¼ 1

4
; jVj ¼ 1; cin ¼ 3

2
.

PHYSICAL REVIEW LETTERS 126, 111301 (2021)

111301-2



dealing with Hawking BH evaporation in spherically
symmetric space-times (Schwarzschild, for example): the
Unruh vacuum (the quantum state that describes Hawking
radiation [22]) 4D stress tensor Tab is approximated by
tab=4πr2, where tab corresponds to the stress tensor of a 2D
massless scalar field (see, for instance, Refs. [23–25]). The
conformal factor n=mc of the transverse (y, z) space plays
the role of r2. The approximation introduced in Eq. (5)
makes the model analytically solvable, and although one
neglects the backscattering of the modes (studied in [26]),
the presence and basic features of the main correlation peak
can be nicely reproduced.
Since our 2D field is conformally invariant, its vacuum

zero temperature two-point function has the same form as
in Minkowski space-time, namely lnðΔxþΔx−Þ, where x�
are the null coordinates associated to the space-time metric
[27]. We have (up to a, irrelevant in our case, diverging
constant related to the infrared divergence of our 2D
theory)

hδθ̂ð2Þðt; xÞδθ̂ð2Þðt0; x0Þi ¼ −
ℏ
4π

lnðuin − u0inÞðvin − v0inÞ;
ð8Þ

where

uin ¼ t −
x

cin − jVj ; vin ¼ tþ x
cin þ jVj ð9Þ

are the null coordinates associated to the metric (1) for
t < 0. This two-point function characterizes our “in”
quantum state for the field δθ̂ which corresponds to an
initial vacuum (i.e., no incoming phonons from both left
and right past null infinity).
This expression can be extended for t > 0 simply by

matching the null coordinates along the spacelike shell at
t ¼ 0 (see Fig. 1).
Note that our theory is conformal invariant and so there

is no scattering both inside the condensate and at the
transition layer. For t > 0, the corresponding null coordi-
nates are

u ¼ t −
1

κ
ln sinh

3κjxj
2jVj ;

v ¼ tþ 1

8κ

�
9κx
2jVj − ln cosh

�
3κx
2jVj þ tanh−1

1

3

��
: ð10Þ

Matching u and uin at t ¼ 0 we get

−κu ¼ ln sinh jAuinj; ð11Þ

where A ¼ ½ð3κÞ=ð2jVjÞ�ðjVj − cinÞ < 0, which can be
inverted, giving

juinAj ¼ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2κu

p
þ e−κuÞ: ð12Þ

For the advanced null coordinates, the choice of the profile
also allows us to invert the relation v ¼ vðvinÞ and we
obtain

vin ¼
4κv
B

þ 1

2B
ln
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ffiffiffi
2

p
e−8κv

q 	
; ð13Þ

where B ¼ ½3κðcin þ jVjÞ�=ð2jVjÞ. Given these relations,
the correlator (5) for t > 0 can be analytically evaluated
starting from the expression

Gð1Þ
2 ðt; x; x0Þ

¼ −
ℏnð1Þ

4πmcðxÞ1=2cðx0Þ1=2

×

�
1

(cðxÞ − jVj)(cðx0Þ − jVj)
duin
du

du0in
du0

1

ðuin − u0inÞ2

þ 1

(cðxÞ þ jVj)(cðx0Þ þ jVj)
dvin
dv

dv0in
dv0

1

ðvin − v0inÞ2
�





t¼t0
:

ð14Þ

The resulting expression in terms of (t, x) coordinates is
rather long and will be given elsewhere [28]. For t < 0,
a similar expression holds, just replace cðxÞ by cin
and (u, v) by (uin; vin). In Fig. 2 we have represented
the correlator for points x > 0 (outside the horizon)
and x0 < 0 (inside the horizon) at four increasing times
(t1 ¼ 1

κ ; t2 ¼ 2
κ ; t3 ¼ 4

κ ; t4 ¼ 5
κ).

One sees very nicely the ramp-up and the formation at
late time of the deep valley (the correlator is negative)
located at x ¼ −x0. This is the signal of Hawking’s particle-
partner pairs production. This can be confirmed analyti-
cally by taking the late-time limit, uin → 0, u → þ∞ of
Eq. (12) yielding juinAj ∼ e−κu and, from Eq. (13),
vin ∼ 4κv=B, giving

Gð1Þ
2 →

−ℏnð1Þ

4πmjVj3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2

3
tanh 3κx

2jVjÞð1þ 2
3
tanh 3κx0

2jVjÞ
q

×

2
64− 9κ2

16 tanh 3κx
2jVj tanh

3κx0
2jVj cosh

2
�
1
2
ln

sinh3κx
2jVj

sinh3κjx
0 j

2jVj

	

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ 2

3
tanh 3κx

2jVjÞð2þ 2
3
tanh 3κx0

2jVjÞ
q

(vðt; xÞ − v0ðt; x0Þ)2

3
75;

ð15Þ

where in the second term [see the second equation of (10)]
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vðt; xÞ − v0ðt; x0Þ ¼ 9

16jVj ðx − x0Þ

−
1

8κ
ln

2e3κx=2jVj þ e−3κx=2jVj

2e3κx
0=2jVj þ e−3κx

0=2jVj : ð16Þ

For x ¼ −x0 sufficiently far away from the horizon, the tanh
terms appearing in Eq. (15) can be well approximated by
their asymptotic values, while the remaining 1

cosh2 term has
indeed a minimum for x ¼ −x0. In Fig. 3 we plot the value
of the correlator (14) at t ¼ 10

κ as a function of x for,
respectively, fixed x0 ¼ −5;−6;−7;−8. One clearly sees
that the peak is located at x ¼ −x0 for jx0j ≳ 7, while for
values of jx0j closer to the horizon the peak at x ¼ −x0 does
not appear. This is due to the fact that as one approaches the
horizon (x ¼ −x0 → 0), the singularity of the two-point
function at coincidence points starts dominating [29]. Thus,
pairs production appears not to be located near the horizon
but in a region outside it. This is in agreement with previous

suggestions on the existence of a “quantum atmosphere,”
as referred in Refs. [13–15], where Hawking radiation
emerges out of vacuum fluctuations. In Fig. 4, obtained
by cutting the density correlator (14) along the line
x ¼ x0 þ 16, perpendicular to the peak at x ¼ −x0 ¼ 8,
we plot the temporal formation of the peak profile. We note
that the late-time limit is governed by the condition (one
for each point) e−κt sinhð3κjxjÞ=ð2jVjÞ ¼ cst ≪ 1. Such
t ¼ tðxÞ governs the formation of the peak at x ¼ −x0 and
also its length. Away enough from the horizon, the length
of the peak grows linearly in t, as noticed also in Ref. [6].
Let us now consider the case in which the condensate

has an initial temperature T, so instead of the vacuum
we have, for t < 0, a thermal distribution of phonons.
This analysis is rather important since experimentally a
condensate has always a nonvanishing temperature which
may be comparable to or even bigger than the Hawking
one, TH ¼ ℏκ=2πkB, associated to the thermal emission of
phonons by the sonic horizon. The initial population of
phonons in thermal equilibrium in the comoving frame is
characterized by an occupation number,

NωuðvÞ ¼
1

eℏωuðvÞ=kBT − 1
; ð17Þ

where ωu and ωv are the Doppler rescaled frequencies
corresponding to right moving phonons (u) and left moving
ones (v):

ωu ¼
ωcin

cin − jVj ; ωv ¼
ωcin

cin þ jVj : ð18Þ

The corresponding two-point function for the field δθ̂ð2Þ

reads [30]

hδθ̂ð2Þðt; xÞδθ̂ð2Þðt0; x0Þi ¼ −
ℏ
4π

ln
sinhAuΔuin

Au

sinhAvΔvin
Av

;

ð19Þ

where AuðvÞ ¼ ½πkBTðcin ∓ jVjÞ�=ðℏcinÞ, Δuin ¼ ðuin−u0inÞ
and similarly for vin. The time evolution of the correspond-
ing density-density correlator,

Gð1Þ
2T ðt;x;x0Þ¼−

ℏnð1Þ

4πmcðxÞ1=2cðx0Þ1=2

×

�
1

(cðxÞ−jVj)(cðx0Þ−jVj)
duin
du

du0in
du0

A2
u

sinh2Auðuin−u0inÞ

þ 1

(cðxÞþjVj)(cðx0ÞþjVj)
dvin
dv

dv0in
dv0

A2
v

sinh2Avðvin−v0inÞ
�





t¼t0
;

ð20Þ

is shown in Fig. 5 for T ¼ 10TH. We do not see notice-
able differences in the time evolution when the BEC

5 10 15 20
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–0.08

–0.06

–0.04

–0.02

FIG. 3. Plot of the density correlator (14) at t ¼ 10
κ as a function

of x for fixed x0 ¼ −5 (blue line), x0 ¼ −6 (orange line), x0 ¼ −7
(green line), x0 ¼ −8 (red line).

–10 –8 –6 –4

–0.04

–0.03

–0.02

–0.01

FIG. 4. Plot of the temporal formation of the peak profile
[t1 ¼ 1

κ (blue line), t2 ¼ 2
κ (orange line), t3 ¼ 4

κ (green line), and
t4 ¼ 5

κ (red line)], obtained by cutting Eq. (14) along the line
x ¼ x0 þ 16, perpendicular to the valley x ¼ −x0 at the point
x ¼ −x0 ¼ 8.
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temperature equals the Hawking temperature (T ¼ TH)
with respect to the T ¼ 0 case.
One sees that the stationary configuration with the valley

located at x ¼ −x0 (x ≫ 0) appears even in this case but at a
time that is bigger than the one required at T ¼ 0 and this
time can increase with T. This can be seen by noticing that
at finite temperature the late-time limit condition we got
at T ¼ 0 has to be supplemented (for T > ð3cin=jVjÞTH)
by the more stringent requirement f½πkBTðcin − jVjÞ�=
ðjAjℏcinÞge−κt sinh½ð3κjxjÞ=ð2jVjÞ� ¼ cst ≪ 1. At late
times the first term in Eq. (20) coming from the u modes
contribution reduces to the corresponding one at T ¼ 0 [the
first term in Eq. (15)]: this is due to the fact that the late-
time contribution comes only from the modes propagating
very close to the horizon (i.e., u → þ∞) and these are
highly redshifted, so any information of the initial state is
washed out (no hair theorem for Hawking radiation).
Therefore, an initial population causes stimulated emission
of u phonons which is, however, just a transient effect [31].
This does not hold for the v modes because they are not
redshifted and, hence, the second term in Eq. (20) shows
a temperature dependence also in the stationary regime at
late time. The thermal v contribution to the correlator is
positive, but, as the TH ¼ 0 one (which is negative),
smaller than the u contribution. For instance, for x ¼ −x0 ¼
10 such contributions are one order of magnitude smaller
than the u contribution. So the temperature corrections,
within the hydrodynamical approximation (gravitational
analogy), are small.
In conclusion, in this Letter we have presented a simple

analytical model able to describe how the Hawking signal
in a BEC emerges out of a region significantly outside the
horizon. This gives a solid support, now based on the study

of correlation functions, on a “quantum atmosphere” as
locus of origin of Hawking radiation. So far its existence
was suggested analyzing the behavior of the expectation
values of the stress tensor for quantum fields in a
Schwarzschild BH [13–15] in the region exterior to the
horizon. However, these quantities involve renormalization
to cure ultraviolet divergences and include both vacuum
polarization and Hawking radiation contributions, and it is
hard to disentangle them in the region close to the horizon
where they are of comparable magnitude. We think that the
formation and subsequent evolution of the peak in the
correlation function that we studied here is a more genuine
way to characterize the region where Hawking particles
and their corresponding partners materialize out of the
vacuum fluctuations. For a quantitative characterization of
this region, as can be seen in Fig. 2, the appearance of the
signal is not immediate; one has to wait a time of order 4

κ to
see it and it does not occur close to the horizon but at a
distance of order 7jVj=4κ (i.e., x ¼ −x0 ∼ 7 in our plots; see
the green line in Fig. 3) away from it. As can be seen in
Fig. (5), for a BEC ambient temperature T ¼ 10TH this
delay is enhanced: the ramp-up process is slower and it lasts
up to a time of roughly 5

κ. We hope this work can be the
starting point for a more detailed theoretical modeling
based on the powerful methods of QFT in curved space-
time in support of ongoing cold atoms experiments and
others involving externally driven or backreacting analog
BH horizons.
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