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We consider the fate of 1=N expansions in unstable many-body quantum systems, as realized by a
quench across criticality, and show the emergence of e2λt=N as a renormalized parameter ruling the
quantum-classical transition and accounting nonperturbatively for the local divergence rate λ of mean-field
solutions. In terms of e2λt=N, quasiclassical expansions of paradigmatic examples of criticality, like the
self-trapping transition in an integrable Bose-Hubbard dimer and the generic instability of attractive
bosonic systems toward soliton formation, are pushed to arbitrarily high orders. The agreement with
numerical simulations supports the general nature of our results in the appropriately combined long-time
λt → ∞ quasiclassical N → ∞ regime, out of reach of expansions in the bare parameter 1=N. For
scrambling in many-body hyperbolic systems, our results provide formal grounds to a conjectured
multiexponential form of out-of-time-ordered correlators.
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The semiclassical (small ℏ) expansion provides a tool to
address in a systematic way quantum effects on observables
admitting a power expansion around their classical values
where ℏ ¼ 0 [1,2]. It comes as no surprise then that such
expansions have achieved a prominent role in the study of
both the quantum-classical transition itself [3] and the
physics of systems in the mesoscopic regime [4,5]. With the
impressive advances in the coherent preparation, control,
and manipulation of ever larger quantum systems, this
mesoscopic regime where the system remains coherent but
where typical classical actions are large compared with ℏ
keeps growing and, with it, the range of applications of
these methods [6]. The extensive use of phase space
methods based on Wigner-Moyal calculus in its several
variants, like high-temperature expansions in statistical
mechanics [1,7,8], truncated Wigner approximation
describing the dynamics of cold atoms [9–12], Weyl-
Kirkwood expansions in nuclear physics [5,13], and others,
show the breadth and power of quasiclassical expansions
[14] even in the presence of decoherence [15–18].
When lifted into the realm of interacting many-body

systems admitting a well-defined mean-field (MF) descrip-
tion in terms of bosonic order parameters, the quasiclassical
expansion is formally constructed by means of the key
identification of the number of particles N as inverse
effective Planck constant, namely ℏeff ¼ 1=N, where quan-
tum fluctuations around the MF limit assume the form of
expansions in powers of 1=N [19–22]. In particular, matrix
elements of time-dependent operators in the Heisenberg
picture are expected to have a (at least asymptotic) 1=N
expansion. The limitations of such a bare large-N expan-
sion become evident when the dynamics of the observables
is driven by a quench across a phase transition [23], here

defined as an instability of the MF when changing a
control parameter [22,24–30]. The interplay between local
MF instability, measured by an imaginary Bogoliubov
frequency λ, and quantum fluctuations makes the Wigner-
Moyal expansion valid only before the onset of nonpertur-
bative quantum interference effects [31] at a timescale
tE ∼ logN=ð2λÞ [32,33] parametrically small in N. In
practice, however, the quasiclassical expansion (and its
characteristic Taylor-like form in t and 1=N) breaks down
well before this fundamental limitation due to the uncon-
trolled complexity of high-order Moyal expansions.
In this Letter, we address this early breakdown of 1=N

expansions around MF instabilities and show that it can be
pushed up to t ∼ tE by introducing a renormalized small
parameter eλt=

ffiffiffiffi
N

p
that subsumes the effect of local hyper-

bolicity. This is demonstrated by suppressing leading
orders in the 1=N expansion of Heisenberg operators using
(approximate) harmonic oscillator states jki localized at the
instability, leading to the scaling

hkjÂðtÞjli ∼ cklðeλt=
ffiffiffiffi
N

p
Þjk−lj ¼ ckleλðt−tEÞjk−lj; ð1Þ

in the regime λt ≫ 1, N → ∞, with N-independent con-
stants ckl. Beyond the shortest timescale 1=λ (often
associated with single-particle scattering or relaxation)
matrix elements exponentially increase, shifted by tE.
This general prediction provides the precise way in which
t and N commonly determine this increase, effectively
absorbing the effect of local MF instability within the 1=N
expansion in a single, renormalized expansion parameter.
Equation (1) is compared against extensive numerical
simulations for the paradigmatic case of the self-trapping
transition in the integrable Bose-Hubbard dimer [20,34–36]
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in Fig. 1, which extends to spin-1=2 chains with long-range
interactions in the symmetric subspace [22]. Later, we will
report similar results for the nonintegrable three-site model
[37–40] with close relation to the generic instability of
attractive Bose gases toward soliton formation [41,42],
while similar considerations apply to any system with a
well-defined classical limit, including chains with high
(>3=2) local spin [43].
Our analysis is based on the generic behavior of

time-dependent perturbative expansions of interacting
bosonic systems applied to a quench around criticality. It
is illustrated for definiteness using the two-site Bose-
Hubbard Hamiltonian

Ĥ¼−J½â†1â2þ â†2â1�þ
U
2
½ðâ†1Þ2ðâ1Þ2þðâ†2Þ2ðâ2Þ2�: ð2Þ

It allows for a detailed analysis due to its low level of
complexity, while generalization to an arbitrary number of
sites can be found in the Supplemental Material [44]. The
steps of the calculation are the same in all cases: First, a
MF model has to be identified as a formal classical limit,
using the (conserved) inverse particle number 1=N as an
effective Planck constant. Then, an expansion of the MF
Hamiltonian around the prequench global minimum is used
to obtain a well-controlled low-energy description of the
system via canonical quantization. An expansion of the
postquench unstable dynamics around the very same point
is then the starting point for a perturbative analysis that
finally reveals the renormalized expansion parameter,
leading to the scaling in Eq. (1).
Quantization of the mean field.—As N is conserved, the

MF dynamics is described using the occupation imbalance

and the conjugate phase only, leading to the energy per
particle [44]

HMF

ÑJ
¼ hðz;φÞ − 1 − α

�
1

2
þ 1

Ñ
−

1

Ñ2

�
; ð3Þ

with the classical MF dynamics only determined by the
Josephson Hamiltonian

hðz;φÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4z2

p
cosφ − 2αz2: ð4Þ

In Eqs. (3) and (4), z¼ðn1−n2Þ=ð2ÑÞ is the relative
occupation imbalance, with Ñ¼Nþ1≈N, φ is the con-
jugate phase, and the interaction is scaled as α ¼ −UÑ=2J
with α > 0 for attractive coupling. The global energy
minimum at z ¼ φ ¼ 0 for couplings α ≤ 1 is replaced
by a hyperbolic fixed point for α > 1.
We first consider the quadratic approximation of Eq. (4)

around the global minimum for α < 1, described by a
harmonic oscillator

h0ðz;φÞ ¼
φ2

2
þ ω2z2

2
; ω ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
: ð5Þ

The states jki in Eq. (1) are thus harmonic oscillator states.
For α > 1 we use the full model

hðz;φÞ ¼ φ2

2
−
λ2z2

2
þ vðz;φÞ; ð6Þ

with v at least cubic in ðz;φÞ and

λ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
α − 1

p
ð7Þ

being the instability of the hyperbolic fixed point.
The MF Hamiltonians (5) and (6) are then quantized by

replacing the variables z, φ by operators (using symmetric
ordering) and requiring the commutator relation

½ẑ; φ̂� ¼ iℏeff ¼
i

Ñ
: ð8Þ

Interaction picture.—Using

ÂðtÞ ¼ eði=ℏeffÞðĥ−v̂ÞÂe−ði=ℏeffÞðĥ−v̂Þ; ð9Þ

we treat the postquench dynamics generated by the
quadratic part of ĥ ¼ hðẑ; φ̂Þ exactly. A Heisenberg oper-
ator (denoted with subindex H) can then be formally
expanded as [48]

ÂHðtÞ ¼
X∞
n¼0

1

ðiℏeffÞn
Z

t

0

dt1

Z
t1

0

dt2…
Z

tn−1

0

dtn

× ½½…½½ÂðtÞ; v̂ðt1Þ�; v̂ðt2Þ�;…�; v̂ðtnÞ�; ð10Þ

FIG. 1. Exponential growth of matrix elements, Eq. (1), with
Â ¼ ẑþ ẑ2 after an interaction quench from α ¼ 0 to α ¼ 2.5 for
N ¼ 105 particles in the Bose-Hubbard dimer [Eqs. (2) and (3),
ẑ ¼ ðn̂1 − n̂2Þ=2N]. The main panel shows the absolute squares
for l ¼ 10 and k ≠ l ranging from 4 to 16. Solid lines represent
the numerical data, while the dashed lines show the predicted
dominant scaling, Eq. (1). Inset: shows a collapse of the absolute
values (top) and the phases (bottom) using the prediction for the
coefficients ckl [44].
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where the zero-order term is defined as ÂðtÞ. Equation (10)
can be used as a perturbation expansion when both ẑ and φ̂
can be considered as small, as is the case for the prequench
eigenstates that have a characteristic extent ∼

ffiffiffiffiffiffiffi
ℏeff

p
in both

z and φ. We make this explicit by defining the Hermitian
operators

b̂� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2λℏeff

p ðλẑ� φ̂Þ; ½b̂−; b̂þ� ¼ i; ð11Þ

with a trivial time evolution b̂�ðtÞ ¼ e�λtb̂�ð0Þ. They are
related to the prequench ladder operators of Eq. (5) by

b̂� ¼ e∓iϕâþ e�iϕâ†ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sin 2ϕ

p ; âjki ¼
ffiffiffi
k

p
jk − 1i; ð12Þ

with ϕ ¼ tan−1ðω=λÞ, such that they are Oðℏ0
effÞ when

applied to the noninteracting states with k ¼ OðN0Þ, i.e.,
the states with quantum fluctuations hb̂2�i ¼ Oðℏ0

effÞ.
With these definitions, one can formally use ℏeff as a

small parameter and the condition for the validity of the
expansion (10) is given by a local Ehrenfest time

ℏeffhb̂2þðtÞi ≪ 1 ⇔ t ≪
logðℏ−1

effÞ
2λ

≡ tE; ð13Þ

characterized by the breakdown of the quadratic approxi-
mation. The expectation value can be taken in the ground
state or in a thermal ensemble of the prequench system with
temperature kBT=Δ ¼ Oðℏ0

effÞ, where Δ is the single- or
quasiparticle excitation energy.
The explicit time dependence of v̂ðtÞ takes the form

v̂ðtÞ ¼
X
μ;ν

vμνℏ
ðμþνÞ=2
eff eðν−μÞλtfb̂μ−b̂νþgs; ð14Þ

where the dependence on ℏeff has been made also explicit
and f…gs denotes symmetric ordering. The same can be
done for ÂðtÞ, assuming that the MF limit of Âð0Þ is
independent of ℏeff [49], such that the time dependence
(and the coefficients vμν) can be pulled out of the
commutators in Eq. (10) that is now organized as a power
series in

ffiffiffiffiffiffiffi
ℏeff

p
. By suppressing corrections of the form te−λt

for t ≫ 1=λ in the respective (operator valued) coefficients,
one finds the dominant scaling [44]

ÂHðtÞ ∼
X
k

Ckð
ffiffiffiffiffiffiffi
ℏeff

p
eλtb̂þÞk; ð15Þ

with the ℏeff -independent coefficients Ck determined by the
operators Â and v̂. Equation (12) implies

hkjb̂nþjli ¼ 0 for n < jk − lj; ð16Þ
such that matrix elements scale as stated in Eq. (1) with

ckl ¼ Cjk−ljhkjb̂jk−ljþ jli for t ≪ tE, with possible exceptions

only if Cjk−lj ¼ 0 for specially constructed operators Â.

Nonlinearities of the prequench system, Eq. (4) for
α < 1, can now be included in a consistent way: The
full eigenstates are expanded in a perturbation series
around the harmonic oscillator states jki. One can then
show using adiabatic switching [44] that these corrections
do not contribute to the dominant scaling in Eq. (1),
justifying the harmonic approximation (5). Figure 1 shows
a comparison of the numerical simulations and the
prediction in Eq. (1) for N ¼ 105 particles and α ¼ 2.5
using the operator Â ¼ ẑþ ẑ2. The fully analytical pre-
diction (dashed lines) is clearly verified, as can be seen
in the main plot. The top inset shows a collapse of the
absolute values to the function ℏeffe2λt by calculating
jc−1kl hkjÂðtÞjlij2=ðjk−ljÞ. The bottom inset shows the devia-
tions Δϕkl ¼ arg½eiðl−kÞϕhkjÂðtÞjli� between numerical and
predicted phases (modulo π) accumulated in the time
evolution, with ϕ defined in Eq. (12).
Expectation values and out-of-time-ordered correla-

tors.—Although characterizing the time evolution of the
off-diagonal matrix elements in a given basis solves the
time-dependent problem, they cannot be observed directly.
Nevertheless, a direct consequence of the universal form in
Eq. (1) is that expectation values are given as power series
in the parameters ℏeffe2λt. If the system is in thermal
equilibrium before the quench, this can be even refined
using Wick’s theorem in Eq. (15), yielding

hÂðtÞi ¼
X
m

ð2m − 1Þ!C2mðℏeffe2λthb̂2þiÞm; ð17Þ

with the temperature kBT ¼ β−1 entering only via

hb̂2þi ¼
cothðβΔ=2Þ
2 sin 2ϕ

; ð18Þ

for βΔ¼Oðℏ0
effÞ. Here,Δ is the single-particle level spacing

in the harmonic approximation, thus suggesting the further

renormalization ℏðrÞ
effðt; βÞ ¼ ℏeffe2λt coth ðβΔ=2Þ.

A common probe for the instability properties in
quantum systems is the out-of-time-ordered correlator
(OTOC) [22,50–53]. Using our approach, one can straight-
forwardly obtain a multiexponential form of the OTOC
similar to a conjecture by Gu and Kitaev [54],

CðtÞ ¼ −h½ÂðtÞ; B̂ð0Þ�2i
∼ ðℏeffeλtÞ2

X
m

cmðℏeffe2λthb̂2þiÞm; ð19Þ

with “classical” coefficients cm determined by the constants
Ck in Eq. (15) and the linear expansion of B̂ in b̂−, leading
to the additional factor ℏeff in Eq. (19). The OTOC scaling
obtained from quasiclassical arguments [50],

CðtÞ ∼ c0ðℏeffeλtÞ2; ð20Þ
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corresponds only to the leading-order term m ¼ 0. One
may now be tempted to use a finite number of terms in
Eq. (19) to obtain a better approximation at intermediate
times. However, we report here the negative result that—at
least for the integrable two-site Bose-Hubbard model—the
corrections are very small within the region of convergence
of the series, as can be seen in the left part of Fig. 2. There,
the predicted series expansion in Eq. (19) is plotted for a
cutoff m ≤ 25 (where cm ¼ 0 for even m), showing a sharp
breakdown at around t ≈ 0.8tE, where the leading-order
approximation (dashed black line) is still remarkably
accurate. One should therefore not use higher-order expo-
nentials for fitting data that do not show a clear exponential
regime as was already noticed for the Sachdev-Ye-Kitaev
model [55], a manifestation of the nonperturbative break-
down of the exponential behavior around tE.
One may, however, improve the prediction in the short-

time regime λt ∼ 1 by using the full time dependence of the
leading order in ℏeff , as is demonstrated by an analytic
prediction [44] (dashed black line) in Fig. 2, accurate also at
early times. This may allow for well-controlled fitting in
many cases where ℏeff ¼ N−1 cannot be chosen arbitrarily
small (cf. [22,56–60]).
The higher orders are, however, essential when it comes

to cumulants of operators, as the nth cumulant of an
operator of the form (15) dominantly scales as [44]

κnðtÞ ∼ dnðℏeffe2λthb̂2þiÞn−1; ð21Þ

with a constant dn. Note that the nth moments are expected
to grow only as ðℏeffe2λtÞm withm¼ n=2 orm ¼ ðnþ 1Þ=2
for even or odd n, such that various leading-order terms

have to cancel in the cumulants for n ≥ 4. Equation (21) is
verified in the right part of Fig. 2, where numerical results
for the first five nonvanishing cumulants of ẑðtÞ are shown
to follow such scaling while verifying ℏeffe2λt as the single
relevant expansion parameter for this system.
Generalization to more degrees of freedom.—Our analy-

sis of the two-site model can be directly generalized
to systems with more degrees of freedom that have a
(symmetry protected) fixed point that undergoes a bifurca-
tion at some critical coupling, yielding

ÂðtÞ ∼
X
k

Ck

Y
i

ð
ffiffiffiffiffiffiffi
ℏeff

p
eλitb̂ðiÞþ Þki ; ð22Þ

with index i running through all the unstable directions

characterized through b̂ðiÞþ and the λi are the respective MF
divergence rates. The connection to the matrix elements is
not as straightforward, in general, as the relation between

the operators b̂ðiÞ� and the bosonic operators characterizing
the prequench stable dynamics can be any linear trans-
formation, but the largest divergence rate will generically
dominate the cumulants and expectation values. The Bose-
Hubbard model with L sites is special in this respect, as the
interaction only enters as a quadratic term in the MF
Hamiltonian, enabling a complete separation of the linear-
ized dynamics that does not depend on the interaction [44],
allowing us also to write

hkjÂðtÞjli ∼ ckl
Y
i

ð
ffiffiffiffiffiffiffi
ℏeff

p
eλitÞjki−lij ð23Þ

in the basis of the prequench eigenstates that is selected
through an infinitesimal interaction.
To show that the approach remains equally valid in

systems without an integrable MF limit, a numerical
simulation of the three-site Bose-Hubbard model

Ĥ ¼ −J
X3
j¼1

ðâ†j âjþ1 þ â†jþ1âjÞ þ
U
2

X3
j¼1

ðâ†jÞ2ðâjÞ2 ð24Þ

with periodic boundary conditions has been performed
for N ¼ 300 particles and for an interaction quench
from U ¼ 0 to U ¼ −20J=N. The MF analysis shows a
bifurcation of the global energy minimum at U ¼ −9J=2N
with two unstable directions having the same divergence
rate λ [44].
To verify the scaling of the matrix elements, Fig. 3

shows a collapse of the (nonvanishing) matrix elements to
horizontal lines using the ansatz

fÂðtÞðkÞ ¼
jhk1k2jÂðtÞj0ij2=ðk1þk2Þ

ℏeffe2λt
∼ const ð25Þ

for operators satisfying the scaling (23). The upper panel
uses ÂðtÞ ¼ ẑ1ðtÞ, where ẑi ¼ n̂i=N is the (scaled) number

FIG. 2. Left: OTOC CðtÞ ¼ −h½ÂðtÞ; B̂�2i (solid red) for Â ¼
B̂ ¼ ẑ and the analytical prediction using the series expansion in
the renormalized effective Planck constant (dashed blue). Dashed
black lines show the analytic prediction for the leading orders
including short-time corrections. Right: numerical check of the
predicted behavior of the cumulants κnðtÞ, Eq. (21), for n ¼ 2, 4,
6, 8, 10 using roots. The oscillations for n ¼ 10 at short times are
an artifact of the finite numerical precision. All data are for
α ¼ 2.5 with a prequench (α ¼ 0) temperature kBT ¼ 2Δ.
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operator on site i. The analytic prediction for k1 þ k2 ¼ 1
that includes short-time corrections [44] is shown as a
dashed black line and demonstrates that the deviations from
exponential growth can be well explained by the fact that
the requirement tE ¼ logN=2λ ≫ λ−1 is not satisfied for
N ¼ 300. The lower panel demonstrates that also the
commutator of the number operators at different sites
and different times has a scaling similar to Eq. (23). For
this, the ansatz (25) with ÂðtÞ ¼ ½ẑ1ðtÞ; ẑ2ð0Þ�=

ffiffiffiffiffiffiffi
ℏeff

p
is

plotted for all excitations with k1 þ k2 ≤ 5. The factor

ℏ−1=2
eff has been introduced to correct for ½b̂ðiÞþ ; ẑi� ∝ ℏ1=2

eff . As
can be seen in Fig. 3, the individual curves clearly approach
horizontal lines in a regime between λ−1 ≈ 0.35tE and tE.
Conclusions.—We have developed a general framework

that shows how the relevant parameter for the dynamics
after a quench across a critical point is given by a
renormalized effective Planck constant e2λt=N in the
quasiclassical regime N ≫ 1 and for λt ≫ 1. We support
our analytical results by extensive numerical simulations
for two exemplary critical scenarios: the self-trapping
transition characteristic of integrable Josephson-like
Hamiltonians and the nonintegrable three-site Bose-
Hubbard model. While our approach is applicable to any
system with bosonic order parameter in a well-defined
mean-field limit, for these specific examples we uncover
the predicted scaling in the matrix elements of generic
operators. Although most observables are dominated by the
first-order quasiclassical result, higher-order terms in the
renormalized parameter are crucial when considering

cumulants of simple operators, demonstrating the quantum
nature of the results.
Some results of this Letter on expectation values may

also be obtained within approaches more suitable to
address the approach to equilibrium at long times (e.g.,
Keldysh field theory). The method used here, however,
directly addresses the short-time transient regime after a
quench and is generally valid in any situation where a
quantum-classical correspondence can be constructed. This
may pave the way to generalize our results to the generic
situation of chaotic or mixed (many-body) systems by
restricting the dynamics to the vicinity of the less unstable
classical periodic orbits [53,61] instead of stationary mean-
field configurations as it was done here. This extension is
the subject of present efforts.
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