
 

Experimental Quantum Principal Component Analysis via Parametrized
Quantum Circuits

Tao Xin,1,2,* Liangyu Che ,1 Cheng Xi ,1 Amandeep Singh ,1 Xinfang Nie,1 Jun Li,1,2,†

Ying Dong,3,‡ and Dawei Lu 1,2,§

1Shenzhen Institute for Quantum Science and Engineering and Department of Physics,
Southern University of Science and Technology, Shenzhen 518055, China

2Guangdong Provincial Key Laboratory of Quantum Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China

3Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou, Zhejiang, 311121, China

(Received 23 June 2020; revised 20 November 2020; accepted 23 February 2021; published 18 March 2021)

Principal component analysis (PCA) is a widely applied but rather time-consuming tool in machine
learning techniques. In 2014, Lloyd, Mohseni, and Rebentrost proposed a quantum PCA (qPCA) algorithm
[Lloyd, Mohseni, and Rebentrost, Nat. Phys. 10, 631 (2014)] that still lacks experimental demonstration
due to the experimental challenges in preparing multiple quantum state copies and implementing quantum
phase estimations. Here, we propose a new qPCA algorithm using the hybrid classical-quantum control,
where parameterized quantum circuits are optimized with simple measurement observables, which
significantly reduces the experimental complexity. As one important PCA application, we implement a
human face recognition process using the images from the Yale Face Dataset. By training our quantum
processor, the eigenface information in the training dataset is encoded into the parameterized quantum
circuit, and the quantum processor learns to recognize new face images from the test dataset with high
fidelities. Our work paves a new avenue toward the study of qPCA applications in theory and experiment.
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Introduction.—The past decade has witnessed rapid
progress in machine learning and quantum information
science and in particular their preliminary amalgamation
[1–5]. Machine learning techniques have been widely
employed as powerful tools in pattern recognition, stat-
istical analysis, and optimization. Besides being enhanced
by increasing the classical computing power, machine
learning can also be boosted with the aid of quantum
computers, yielding a quantum speedup [6–10]. The
quantum machine learning has been explored algorithmi-
cally and experimentally in support vector machines
[11,12], generative adversarial network models [13,14],
the solving of linear systems of equations [15–18], and the
solving of linear differential equations [19]. However,
principal component analysis (PCA)—one of the pioneer-
ing and most important machine learning algorithms with
more than one hundred years of history [20–22]—has yet to
be included in that list of areas explored. Furthermore,
although the quantum PCA (qPCA) algorithm was pro-
posed by Lloyd et al. in 2014 [23], it still lacks
experimental demonstration. The original qPCA requires
simultaneous multiple copies of a quantum state and
complex quantum circuits such as quantum phase estima-
tions, which are great challenges in an experiment.
PCA is a popular dimensionality reduction tool. It works

by simplifying a semidefinite positive Hermitian matrix
through decomposing it in terms of the eigenvectors with

large eigenvalues [24]. On a classical computer, it is done
by singular value decomposition or eigenvalue decompo-
sition on the covariance matrix. In fact, this process can be
thought of as being closely related to the hybrid classical-
quantum algorithms [25–30] that aim at variational opti-
mization with the following formulated problem. A state
ρðθÞ is prepared through a quantum circuit UðθÞ acting on
some initial state, where θ is a vector parameterizing the
quantum circuit. The expectation value of an observable
Tr½ρðθÞP� is then measured as an objective function, and
the parameters θ are optimized over the objective function.
In the hybrid classical-quantum algorithms, a quantum
processor performs these classically daunting tasks: run-
ning the parameterized quantum circuits (PQC), evaluating
the observables, and optimizing the parameters.
In this Letter, we propose a new qPCA procedure based

on PQC and implement the experiments to realize the
qPCA-based human face recognition on a nuclear magnetic
resonance (NMR) quantum processor [12,31]. Inspired by
the original qPCA by Lloyd et al. [23], we incorporate
the hybrid classical-quantum algorithm and devise the
PQC-based qPCA algorithm to be free of the multiple
state copies requirement. As a verification, we conduct an
experiment on the human face recognition problem, where
the face images used for training and testing are all taken
from the Yale Face Dataset [32]. Experimental results
show that the original face images have been successfully

PHYSICAL REVIEW LETTERS 126, 110502 (2021)

0031-9007=21=126(11)=110502(6) 110502-1 © 2021 American Physical Society

https://orcid.org/0000-0002-0172-601X
https://orcid.org/0000-0002-6709-2283
https://orcid.org/0000-0001-5170-6511
https://orcid.org/0000-0003-0462-7225
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.110502&domain=pdf&date_stamp=2021-03-18
https://doi.org/10.1038/nphys3029
https://doi.org/10.1103/PhysRevLett.126.110502
https://doi.org/10.1103/PhysRevLett.126.110502
https://doi.org/10.1103/PhysRevLett.126.110502
https://doi.org/10.1103/PhysRevLett.126.110502


compressed into their corresponding eigenfaces via the
qPCA implementation and that the reconstructed images
from these eigenfaces recover the original faces. Now let
us describe our qPCA algorithm and its experimental
demonstration.
Protocol.—Given a quantum state ρ, the first step of

qPCA is to find its large eigenvalues or all nonzero
eigenvalues if ρ is low rank. In general, any density matrix
ρ can be expanded as ρ ¼ P

N−1
j¼0 λjjψ jihψ jj, where fjψ jig

is an orthogonal basis and N ¼ 2n with n the number
of qubits. Without loss of generality, we assume that
the eigenvalues are sorted in descending order, i.e.,
λ0 ≥ λ1 ≥ � � � ≥ λN−1. If we can find a unitary operation
Ug that maps jψ ji to jji, that is, diagonalizing ρ [30] as

ρf ¼ UgρU
†
g ¼

XN−1

j¼0

λjjjihjj; ð1Þ

then by performing measurements in the computational
basis fjjig, we are able to estimate the eigenvalue λj as
the probability of getting jji. For generic states, finding
such Ug is unlikely to be efficient. However, if ρ is
highly degenerate, it is possible to do so approximately
using PQC.
First, let P be a semidefinite positive and nondegenerate

Hermitian operator with jji the eigenstate with eigenvalue
pj, i.e., P ¼ P

N−1
j¼0 pjjjihjj. In contrast to the form of ρ, we

assume these eigenvalues are sorted in ascending order
0 ≤ p0 < p1 < � � � < pN−1. In addition, we require that the
operator is normalized, i.e.,

P
j pj ¼ 1. Such an operator is

not hard to construct. A direct choice is a diagonal matrix
with the elements f0; 1; 2;…; N − 1g normalized by the
factor NðN − 1Þ=2. Its Pauli form is [33]

P ¼ 1

NðN − 1Þ
Xn
j¼1

2j−1ðσjz þ 1Þ; ð2Þ

where σjz is the Pauli-Z operator acting on the jth qubit.
We claim that a unitary operator U that minimizes the

expectation TrðUρU† · PÞ would diagonalize ρ in the
computational basis, that is, make Eq. (1) hold. Here P
could be an arbitrary operator as long as it meets all of the
above requirements. A rigorous proof of this statement is
based on the Birkhoff–von Neumann theorem [36,37]
and rearrangement inequality [38] (see the Supplemental
Material [33] for details). Now the problem becomes how
to find Ug. We input ρ into a PQC described by UðθÞ and
measure the expectation value of P at the output. For
instance, measuring P in Eq. (2) only requires a single
Pauli-Z readout on all the qubits, which is not challenging
in experiment. The objective function then reads

LðθÞ ¼ Tr½UðθÞρU†ðθÞ · P�: ð3Þ

By minimizing this objective function over the para-
meter space with some suitable optimization algorithms
[33,39,40], a good approximation of Ug will be yielded
eventually.
For many practical PCA problems, low-rank states are

usually taken into account. For a PCA low-rank state ρwith
the rank r, we only need to rotate the principal components
of ρ into their corresponding computational basis, i.e.,
mapping jψirj¼0 to jji, while imposing no constraints on
the leftover subspace. This will significantly reduce the
dimension of the search space and make it possible to find
a proper UðθÞ with only ∼polyðnÞ free parameters. We
applied this new PCA algorithm to human face recognition
and verified its effectiveness experimentally.
Human face recognition.—In the following, we present

the application of our qPCA algorithm on human face
recognition using our qPCA algorithm, interpenetrated
by the true experimental setting for better understanding.
The workflow schematic for training and recognizing human
faces is illustrated in Fig. 1.
We consider a training dataset containing m1 face

images and a test dataset with m2 face images, where each
image is of M ×M grayscales. First, each grayscale image
is reshaped into an M2 × 1 vector such that the training
dataset can be described by an M2 ×m1 matrix S ¼
½ν1;…; νm1

� and the test dataset by an M2 ×m2 matrix
X ¼ ½ω1;…;ωm2

�. The goal is to train a PQC based on the
training dataset S and then apply this trained PQC to
recognize the faces in the test dataset X. In experiment, we
choose m1 ¼ 4 and m2 ¼ 4. Both the training and test
dataset are from the Yale Face Dataset [32], and the four

FIG. 1. Workflow for human face recognition via qPCA. The
PQC UðθÞ is iteratively optimized via the hybrid classical-
quantum control approach, where the objective function LðθÞ
and the gradient gðθÞ are measured on the quantum processor.
The storage and update of the parameters θ are implemented on a
classical computer. The optimized PQC with the operator Ug is
applied to compute the eigenvectors of the eigenface matrix D
and the covariance matrix C ¼ AAT .
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images in each dataset include two subjects with two facial
expressions for each subject. All images are discretized by
100 × 100 grayscales.
Next we need to load the training dataset into the quantum

circuit. This step requires an efficient implementation
of quantum RAM [41,42], which is highly nontrivial in
experiment. In this work, we compute a reduced
m1 ×m1 (thus in experiment 4 × 4) matrixD ¼ ATA, where
A ¼ S − S̄ and S̄ ¼ Pm1

i¼1 νi=m1. D contains the informa-
tion of the so-called “eigenfaces” and actually represents
some 2-qubit mixed states ρD up to normalization. To solve
the eigenvectors jψ ji and eigenvalues λj of ρD, we prepare a
4-qubit pure state jΨDi such that after tracing out two
ancillary qubits the remnant is ρD. In experiment, preparing
jΨDi is a task of quantum state engineering that can be
realized by gradient-based optimization [43]. This is what
we have done in this experiment. For large quantum systems,
potential schemes with favorable scalability also exist, such
as the hybrid quantum-classical approach [40,44] combined
with a direct fidelity estimation from a few Pauli measure-
ments [45,46]. Discussions about the data loading can be
found in the Supplemental Material [33].
The PQC optimization is as described in the algorithm

section. The notations are the same, that is, the unitary
operator of the PQC is denoted by UðθÞ and the measure-
ment observable P and the objective function LðθÞ have the
form of Eq. (2) and Eq. (3), respectively. Here, we use
the hybrid classical-quantum control method to optimize
the objective function, where in each iteration LðθÞ and its
gradient gðθÞ are measured on the quantum processor. This
will remarkably enhance the precision of the trained PQC
because the optimization is performed on the realistic
quantum processor, incorporating some unknown errors
that cannot be corrected using traditional gradient-based
optimization on classical computers.
After training, an optimal parameter set θ is found, and

the PQC with the operator UgðθÞ can fulfill the function of
Eq. (1) with high fidelity. The eigenvalues and eigenvectors
of ρD are hence λj ¼ TrðρfjjihjjÞ and jψ ji ¼ U†

gðθÞjji,
respectively. Note that jψ ji can be effectively computed via
tensor network techniques such as the density-matrix
renormalization group [47,48].
Finally, the eigenvectors of the covariance matrix,

defined by C ¼ AAT, are computed by ζj ¼ Ajψ ji. The
covariance matrix C is the core data in PCA, which
summarizes the correlations between the different compo-
nents of the data. Note that the covariance matrix is an
M2 ×M2 matrix (in experiment M ¼ 100). The weight
vectors of the training images and test images are calculated
by Ωtrain

j ¼ ζTðνj − S̄Þ and Ωtest
j ¼ ζTðωj − S̄Þ, respec-

tively. Ωtrain and Ωtest can be computed with the polynomial
complexity Oðm2

1Þ [33,49]. In order to recognize a face in
the test dataset, one minimizes the 2-norm kΩtrain −Ωtestk
to find which training image is closest to the test one. This
completes the description of the human face recognition.

Experiment.—As described above, we need a 4-qubit
quantum processor to run the qPCA-based human face
recognition. The NMR system we used is the iodotrifluro-
ethylene (C2F3I) molecule dissolved in d chloroform,
where one 13C nucleus and three 19F nuclei are encoded
as qubits. The internal Hamiltonian of this 4-qubit system
can be written as

Hint ¼ −
X
1≤i≤4

πνiσ
i
z þ

X
1≤i<j≤4

π

2
Jijσizσ

j
z; ð4Þ

where νi is the chemical shift of the ith spin and Jij
represents the coupling strength between the ith and jth
spins. Each spin can be individually addressed by fast
selective control pulses compared to the long coherence
time of over 2.5 s measured by the Hahn echo [50]. All
coupling strengths are around 300 Hz, so 2-qubit gates can
be realized in less than 2 ms. More properties and
parameters about the molecule can be found in the
Supplemental Material [33]. Experiments are carried out
at 298 K on a Bruker 600 MHz spectrometer.
The implemented circuit is presented in Fig. 1. In

experiment, we first create the j0i≡ j0i⊗4 pseudo-pure
state via the selective-transition method [51]. Its fidelity is
over 99% via 4-qubit quantum state tomography [33],
which sets up a reliable ground for subsequent experiments.
To initialize the eigenface density matrix ρD of the training
dataset, we apply a shaped pulse optimized by the well-
established NMR control techniques to prepare a 4-qubit
pure state jΨDi, whose form is exactly ρD after tracing out
two ancillary qubits [33].
The experimental PQC contains two layers. In each layer,

the unitary evolution is
Q

n−1
i¼1 CNOTi;iþ1

Q
n
i¼1 R

i
yðθiÞ,

where n ¼ 2 is the number of work qubits, CNOTi;iþ1

represents a controlled-NOT gate of control qubit i and target
qubit iþ 1, and Ri

yðθiÞ represents a θi single-qubit rotation
about the y axis. In experiment, the single-qubit rotations and
CNOT gates are realized by 0.5 ms and 2.5 ms pulses
of over 0.995 fidelities, respectively. Hence, the 2-layer PQC
UðθÞ contains four rotating angles to be optimized, i.e., the
parameter θ can be written as a row vector fθj; 1 ≤ j ≤ 4g.
The optimization is implemented via the hybrid classical-
quantum control approach as follows.
We start from an initial guess θð1Þ, where the superscript

(1) denotes the iteration number. We perform the PQC
U½θð1Þ� and measure the objective function L½θð1Þ�. As
defined in Eq. (2), the experimental P is chosen as
P ¼ ðσ1z þ 2σ2z þ 3IÞ=12, which has a positive, normalized,
and nondegenerate energy spectrum. In the NMR experi-
ment, hσ1zi is directly measured by flipping the first spin
13C, and hσ2zi is measured by transferring its signal to the
first spin using a SWAP12 gate [33].
To update the parameter θ, we need to measure the

gradient gðθÞ ¼ ∇LðθÞ. In experiment, we adopt the�π=2-
method to measure the gradient for each θj. For example, in
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the kth iteration, we increase and decrease each θðkÞj ð1 ≤
j ≤ 4Þ by π=2, measure the corresponding objective func-
tions, and calculate the gradient by [33]

g½θðkÞj � ¼ 1

2

�
L

�
θðkÞ∶θðkÞj þ π

2

�
− L

�
θðkÞ∶θðkÞj −

π

2

��
: ð5Þ

For the (kþ 1)th iteration, the parameter is updated by
θðkþ1Þ ¼ θðkÞ − αðkÞ · g½θðkÞ�, where αðkÞ is the step size in
the gradient-based optimization. This optimization is
repeated until L converges to the minimal value. We can
see that this optimization is implemented on the quantum
processor, so it can incorporate some unknown errors
occurring in the processor, which are hard to take into
account in a pure classical optimization process. As a
result, after 10 iterations, the objective function L decreases
to very close to the global minimum as shown in Fig. 2(a).
Results.—We also perform quantum state tomo-

graphy [33] on the work qubits and calculate the fide-
lities of the reconstructed density matrices ρ½θðkÞ� compared
to the numerically simulated ones via Fðρ; σÞ ¼
TrðρσÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρ2ÞTrðσ2Þ

p
, as shown in the inset of

Fig. 2(a). The fidelity increases to 99.06% after 10
iterations. Moreover, we compute the eigenvector

jψ jiðkÞ ¼ U†ðθðkÞÞjji at each iteration, where jji is the
jth eigenvector of P in the ascending order. Figure 2(b)
presents the similarity of jψ jiðkÞ with the ideal eigenvector
of the eigenface matrix D, defined by the distance function
Dða; bÞ ¼ ja · bj=jaj2jbj2. The corresponding eigenvalues
as a function of iteration number k are plotted in Fig. 2(c).
These values are eventually very close to those of the
eigenface matrix D. Therefore, 10 iterations on a quantum
processor successfully accomplishes the optimization proc-
ess to get the eigenvalues and eigenvectors of the eigenface
matrix D.
To recognize the human faces in the test dataset, we

compute the eigenvectors of the covariance matrix C by
ζj ¼ Ajψ ji. This gives the eigenface images from the
training dataset, as shown in the left column of Fig. 3.
For each of the four test images, we compute its weight
vector Ωtest

j ¼ ζTðωj − S̄Þ and compare it to the weight
vectors of the training dataset Ωtrain

j ¼ ζTðνj − S̄Þ. This
comparison is encoded by the 2-norm kΩtrain −Ωtestk, and
the experimental values are listed in the table in Fig. 3. It is
obvious that each test image, despite the distinct facial
expressions, can be successfully recognized to be the right
subject from its 2-norm values.
As an extension, we also simulate this qPCA method in

processing image recognition problems with a larger data-
set using different types of PQCs [27,52] to study how to
design PQCs and compare their performances in terms of
the nearest-neighbor, circuit-block, and all-to-all connec-
tivity in qubits, respectively. Figure 4 gives an example of
training 16 face images in an all-to-all connected PQC.
The number of layers needs to be carefully determined,
accounting for factors that include the expressibility of
quantum circuits, the number of optimized parameters, and
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FIG. 2. Experimental results of hybrid classical-quantum opti-
mization. (a) Value of objective function L½θðkÞ� as a function of
the iteration k. Inset is the fidelity curve of the instantaneous
density matrix ρ½θðkÞ� compared to the simulated one. Some bar
forms of the density matrices are also plotted along with the
objective function curve. (b) Similarity of the eigenvectors jψ jiðkÞ
compared to the ideal ones of the eigenface matrix D. (c) Ei-
genvalues λðkÞj as a function of the iteration k and the theoretical
eigenvalues of D are represented by the dotted horizontal lines.

FIG. 3. Human face recognition results from the test dataset.
The 2-norm kΩtrain − Ωtestk values are calculated for each test
image compared to all training images, as listed in the table, while
the least 2-norm value indicates the recognition result. Exper-
imental eigenface images of the training dataset using the qPCA
approach are plotted in the left column.
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the training cost. We discuss in detail this determination by
numerical simulation in the Supplemental Material [33].
Conclusion.—As a popular tool in many machine learn-

ing tasks, classical PCA suffers a severe scaling problem
when computing the eigenvalues and eigenvectors of the
covariance matrix. Rather than use the original qPCA
algorithm that requires multiple copies of quantum states
and the implementation of quantum phase estimations,
we propose a new qPCA approach based on the hybrid
classical-quantum control. By optimizing the multilayer
PQC with an appropriate measuring observable, the eigen-
values and eigenvectors can be efficiently obtained with the
aid of a quantum processor. We apply our qPCA method to
a human face recognition problem with four images in the
training dataset and four images in the test dataset. By
training a 4-qubit NMR quantum processor, the eigenfaces
of the training images are extracted with high fidelities,
and all test images are recognized correctly. As an efficient
way of loading classical data into quantum states is not
yet realized in any experiment, our proof-of-principle
demonstration cannot offer a quantum speedup. However,
once some quantum RAM architecture, e.g., the “bucket
brigade” approach [41,42] or others, can be efficiently
implemented in experiment, the proposed qPCA algorithm
promises more applications in machine learning tasks.
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