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A one-dimensional dissipative Hubbard model with two-body loss is shown to be exactly solvable. We
obtain an exact eigenspectrum of a Liouvillian superoperator by employing a non-Hermitian extension of
the Bethe-ansatz method. We find steady states, the Liouvillian gap, and an exceptional point that is
accompanied by the divergence of the correlation length. A dissipative version of spin-charge separation
induced by the quantum Zeno effect is also demonstrated. Our result presents a new class of exactly
solvable Liouvillians of open quantum many-body systems, which can be tested with ultracold atoms
subject to inelastic collisions.
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In quantum physics, no realistic system can avoid the
coupling to an environment. The problem of decoherence
and dissipation due to an environment is crucial even for
small quantum systems. Furthermore, recent remarkable
progress in quantum simulations with a large number of
atoms, molecules, and ions has raised a fundamental and
practical problem of understanding open quantum many-
body systems, where interparticle correlations are essential
[1–4]. Within the Markovian approximation, the nonuni-
tary dynamics of an open quantum system is generated by a
Liouvillian superoperator acting on the density matrix of
the system [5–7]. While interesting solvable examples have
been found [8–18], the diagonalization of a Liouvillian of a
quantum many-body system is more challenging than that
of a Hamiltonian. Extending the class of exactly solvable
models to the realm of dissipative systems and discovering
prototypical solvable models that can be realized experi-
mentally should promote the deepening of our under-
standing of strongly correlated open quantum systems.
The Hubbard Hamiltonian provides a quintessential

model in quantum many-body physics, where the interplay
between quantum-mechanical hopping and interactions
plays a key role. In particular, equilibrium properties of
the one-dimensional case are well understood with the
help of the exact solutions [19–21]. The Hubbard model
has been experimentally realized with ultracold fermionic
atoms in optical lattices [22], and the high controllability in
such systems has recently invigorated the investigation of
the effect of dissipation due to particle losses [23]. In this
Letter, we show that the one-dimensional Hubbard model
subject to two-body particle losses is exactly solvable. On
the basis of the exact solution, we obtain an eigenspectrum
of the Liouvillian and elucidate how dissipation funda-
mentally alters the physics of the Hubbard model. Our main

findings are threefold. First, we obtain the exact steady
states and long-lived eigenmodes that govern the relaxation
dynamics after a sufficiently long time. Second, we show
that excitations above the Hubbard gap are significantly
altered by dissipation and find that the model shows
novel critical behavior near an exceptional point [24] that
originates from the nondiagonalizability of the Liouvillian.
Third, we demonstrate that spin-charge separation, which
is a salient feature of one-dimensional systems [25], is
extended to dissipative systems by exploiting the fact that
the strong correlation is induced by dissipation even in the
absence of an interaction. Our result shows that a number
of exactly solvable Liouvillians can be constructed from
quantum integrable models subject to loss.
Setup.—We consider an open quantum many-body

system described by a quantum master equation in the
Gorini-Kossakowski-Sudarshan-Lindblad form [5–7]

dρ
dτ

¼ −i½H; ρ� þ
XL
j¼1

�
LjρL

†
j −

1

2
fL†

jLj; ρg
�
≡ Lρ; ð1Þ

where ρðτÞ is the density matrix of a system at time τ. The
system Hamiltonian H is given by the Hubbard model on
an L-site chain

H ¼ −t
XL
j¼1

X
σ¼↑;↓

ðc†j;σcjþ1;σ þ H:c:Þ þ U
XL
j¼1

nj;↑nj;↓; ð2Þ

where cj;σ is the annihilation operator of a spin-σ fermion
at site j, and nj;σ ≡ c†j;σcj;σ. The Lindblad operator Lj ¼ffiffiffiffiffi
2γ

p
cj;↓cj;↑ describes a two-body loss at site j with rate

γ > 0, which is caused by on-site inelastic collisions between
fermions as observed in cold-atom experiments [23,26–28].
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The formal solution of the quantum master equation can
be written down in terms of the eigensystem of the
Liouvillian superoperator L defined in Eq. (1). In this
Letter, we aim at diagonalizing the Liouvillian and obtain
exact results for the effect of dissipation on correlated many-
body systems.
Diagonalization of the Liouvillian.—The one-dimensional

Hubbard model, Eq. (2), is known to be solvable with
the Bethe ansatz [19–21]. Here, we generalize the solv-
ability of the Hubbard Hamiltonian to that of the
Liouvillian on the basis of the existence of a conserved
quantity in the Hamiltonian [29]. We first decompose the
Liouvillian into two parts as L ¼ Kþ J , where Kρ≡
−iðHeffρ − ρH†

effÞ and J ρ≡P
L
j¼1 LjρL

†
j . The effective

non-Hermitian Hamiltonian Heff is given by
Heff ≡H − i

2

P
L
j¼1 L

†
jLj, and its explicit form is obtained

by replacing U in H with U − iγ, thereby making the
interaction strength complex-valued [30–36]. Notably, the
one-dimensional Hubbard model with a complex-valued
interaction strength is still integrable [12,18,33]. If the
interaction strength becomes complex-valued, the SO(4)
symmetry of the Hubbard Hamiltonian [37–39] remains
intact. In particular, an eigenstate of the non-Hermitian
Hubbard model can be labeled by the number of par-
ticles. Let jN; aiR be a right eigenstate of Heff with N
particles: Heff jN; aiR ¼ EN;ajN; aiR, where a distin-
guishes the eigenstates having the same particle number.
Then, one can diagonalize the superoperator K as

KϱðN;nÞ
ab ¼ λðN;nÞ

ab ϱðN;nÞ
ab , where λðN;nÞ

ab ≡ −iðEN;a − E�
Nþn;bÞ

and ϱðN;nÞ
ab ≡ jN; aiRRhN þ n; bj. The superoperator J low-

ers the particle number but never increases it. Thus, in the

representation with the basis fϱðN;nÞ
ab gN;a;b, the Liouvillian

L is a triangular matrix that can easily be diagonalized. This
is a general property of Liouvillians of systems with loss
[29]. Indeed, because the eigenvalues of a triangular matrix
are given by its diagonal elements, the eigenvalues of the

Liouvillian are given by λðN;nÞ
ab . The corresponding right

eigenoperator is given by a linear combination of the basis

as CðN;nÞ
ab ϱðN;nÞ

ab þP
N−2
N0¼0

P
a0;b0 D

ðN;N0;nÞ
aba0b0 ϱðN

0;nÞ
a0b0 , where the

coefficients DðN;N0;nÞ
aba0b0 are obtained from the matrix elements

LhN0 − 2; rjLjjN0; r0iR of the Lindblad operator Lj with
jN0; riL being the left eigenstate dual to jN0; riR [29,40].
We thus conclude that if the non-Hermitian Hubbard
Hamiltonian Heff is integrable, the Liouvillian L is solv-
able. Note that this does not mean that the Liouvillian itself
has an integrable structure such as the Yang-Baxter
relation. Therefore, the mechanism of the solvability here
is different from those of previous works on Yang-Baxter
integrable Liouvillians [12,16–18].
Steady states.—A steady state of the system is charac-

terized by an eigenoperator of L with zero eigenvalue. If a
state jΨi is a right eigenstate of Heff with a real eigenvalue,

one can show LjjΨi ¼ 0, and hence jΨihΨj is a steady state
[40]. For example, the fermion vacuum j0ih0j is trivially a
steady state. Also, in the Hilbert subspace with no spin-
down particles, all eigenstates ofHeff coincide with those in
the noninteracting (U ¼ γ ¼ 0) case and thus describe
steady states. By letting the spin lowering operator act
on the spin-polarized eigenstates, one can construct many
steady states owing to the spin SU(2) symmetry of Heff ,
reflecting the fact that magnetization is conserved during
the dynamics [42,43]. Clearly, these steady states are
ferromagnetic and far from the thermal equilibrium states
of the one-dimensional Hubbard model. Physically, the
steadiness of the ferromagnetic states can be understood
from the Fermi statistics because the spin wave function
that is fully symmetric with respect to a particle exchange
requires antisymmetry in the real-space wave function
and forbids doubly occupied sites that cause a decay, as
observed in Refs. [35,44]. In general, a steady state realized
after a time evolution becomes a statistical mixture of the
above steady states that depends on the initial condition.
Bethe ansatz.—We use the Bethe ansatz to obtain the

eigenspectrum of the non-Hermitian Hubbard model Heff .
The Bethe equations are [19–21]

kjL ¼ Φþ 2πIj −
XM
β¼1

Θ
�
sin kj − λβ

u

�
; ð3Þ

−
XN
j¼1

Θ
�
sin kj − λα

u

�
¼ 2πJα þ

XM
β¼1

Θ
�
λα − λβ
2u

�
; ð4Þ

where N is the number of particles, M is the number
of down spins, kjðj ¼ 1;…; NÞ is a quasimomentum,
λαðα ¼ 1;…;MÞ is a spin rapidity, u≡ ðU − iγÞ=ð4tÞ
is a dimensionless complex interaction coefficient, and
ΘðzÞ≡ 2 arctan z. The quantum number Ij takes an integer
(half-integer) value for even (odd) M, and Jα takes an
integer (half-integer) value for odd (even) N −M. Here we
employ a twisted boundary condition cLþ1;σ ¼ e−iΦc1;σ for
later convenience, but basically setΦ ¼ 0 (i.e., the periodic
boundary condition) unless otherwise specified.
Liouvillian gap.—The late-stage dynamics of the system

near a steady state is governed by long-lived eigenmodes
whose eigenvalues are close to zero [45]. By construc-
tion of the steady states, the long-lived eigenmodes
correspond to Bethe eigenstates in the M ¼ 1 case and
their descendants derived from the spin SU(2) symmetry.
They consist of ferromagnetic spin-wave-type excitations,
and their dispersion relation is obtained by a standard
calculation with the Bethe ansatz [40]. Taking consecutive
charge quantum numbers Ij ¼ −ðN þ 1Þ=2þ j, which
express the simplest situation of charge excitations from
the Fermi surface, we obtain an analytic expression for the
dispersion relation of the spin excitations,
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ΔE ≃ −
t
πu

�
Q0 −

1

2
sin 2Q0

��
1 − cos

πΔP
Q0

�
; ð5Þ

for the momentum ΔP ≃ 0 where Q0 ¼ πN=L is the Fermi
momentum. Since the momentum is discretized in units of
2π=L, the gapless quadratic dispersion around ΔP ¼ 0
leads to the smallest imaginary part of the excitation energy
jIm½ΔE�j proportional to 1=L2. Thus, the Liouvillian gap,
which is defined by the largest nonzero real part of
eigenvalues of the Liouvillian, vanishes in the thermody-
namic limit, implying a power-law time dependence in the
decay dynamics [45].
Hubbard gap, correlation length, and exceptional

point.—Next, we consider the half-filling case
(L ¼ N ¼ 2M) and focus on the solution that can be
adiabatically connected to the ground state of the
Hermitian Hubbard model in the limit of γ → 0. Such
a solution may not contribute to the late-stage behavior
due to a short lifetime, but it can be used to study the
early-time decay dynamics of a Mott insulator. We here
assume that U > 0 and NðMÞ is even (odd), and set
Ij ¼ −ðN þ 1Þ=2þ j and Jα ¼ −ðM þ 1Þ=2þ α as in
the Hermitian case. In the thermodynamic limit, the
Bethe equations, Eqs. (3) and (4), reduce to the integral
equations for distribution functions ρðkÞ and σðλÞ as

ρðkÞ ¼ 1

2π
þ cos k

Z
S
dλa1ðsin k − λÞσðλÞ; ð6Þ

σðλÞ¼
Z
C
dka1ðsin k−λÞρðkÞ−

Z
S
dλ0a2ðλ−λ0Þσðλ0Þ; ð7Þ

where anðzÞ≡ ð1=πÞ½nu=ðz2 þ n2u2Þ�, and C and S denote
the trajectories of quasimomenta and spin rapidities, res-
pectively [21]. Figure 1(a),(b) show typical distributions of
fkjgj¼1;…;N and fλαgα¼1;…;M that are obtained from the
solution of the Bethe equations, Eqs. (3) and (4). The
distributions indicate that if the trajectories C and S do
not enclose a pole in the integrands of Eqs. (6) and (7),
the trajectories can continuously be deformed to those of the
γ ¼ 0 case, i.e., C ¼ ½−π; π� and S ¼ ð−∞;∞Þ. Thus, we
obtain the eigenvalue E0 in the thermodynamic limit from
analytic continuation of the solution in the γ ¼ 0 case [19] as

E0=L ¼ −2t
Z

∞

−∞
dω

J0ðωÞJ1ðωÞ
ωð1þ e2ujωjÞ ; ð8Þ

where JnðxÞ is the nth Bessel function. Similarly, the
Hubbard gap Δc [19,46] is given as

Δc ¼ 4tu − 4t

�
1 −

Z
∞

−∞
dω

J1ðωÞ
ωð1þ e2ujωjÞ

�
: ð9Þ

Here E0 andΔc take complex values in general. The lifetime
of an eigenmode can be extracted from the imaginary part of

the eigenvalue. The absolute value of Im½E0� ≤ 0 first
increases with increasing γ, takes the maximum at some
point, and then decreases [40]. The decreasing behavior
at large γ is attributed to the continuous quantum Zeno
effect [26,27,47–50], which prevents the creation of doubly
occupied sites in eigenstates due to a large cost of the
imaginary part of energy. By contrast, the absolute value of
Im½Δc� ≤ 0 monotonically increases with increasing γ [40]
since the excitation corresponding to the Hubbard gap
creates doubly occupied sites. As the Liouvillian eigenvalues
appear as poles of a single-particle Green’s function [40,51],
the dependence of the Hubbard gap on dissipation can be
found from the linear response of the dynamics by, e.g.,
lattice modulation spectroscopy [40,52,53].
To further elucidate the physics of the dissipative Mott

insulator, we calculate the correlation length ξ of the above
eigenstate from the asymptotic behavior of the charge
stiffness as j½d2E0ðΦÞ�=½dΦ2�jΦ¼0j ∼ exp½−L=ξ�ðL → ∞Þ
[54]. The correlation length quantifies the dependence of
the dynamics on the boundary condition and thus measures
the spatial correlation in the eigenmode. We find that the
correlation length is obtained from the analytic continu-
ation of the result for the γ ¼ 0 case [54]:

1

ξ
¼ Re

�
1

u

Z
∞

1

dy
lnðyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
Þ

coshðπy=2uÞ
�
: ð10Þ

Figure 2(a)–(c) show the correlation length for different
values of the repulsive interaction. For large γ, the
correlation length decreases in all cases, indicating that
particles are more localized due to dissipation. This
behavior is consistent with the quantum Zeno effect
[26,27,47–50]. On the other hand, when U is small, the
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FIG. 1. Numerical solutions of the Bethe equations, Eqs. (3)
and (4), for L ¼ N ¼ 2M ¼ 250. (a),(c) Blue dots show quasi-
momenta fkjg, and red crosses show the locations of poles at
k ¼ �π − arcsinð�iuÞ. (b),(d) Green dots show spin rapidities
fλαg, and red crosses show the locations of poles at λ ¼ �2iu.
The interaction strength is set to u ¼ 1 − 0.5i [(a),(b)] and u ¼
0.6 − 0.469i [(c),(d)]. Points on the real axis show the solutions
for the case of γ ¼ 0 at the same U for comparison.
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correlation length grows at an intermediate dissipation
strength [see Fig. 2(b)], implying that dissipation facilitates
the delocalization of particles. Surprisingly, the correlation
length even diverges for small U and takes negative values
in between the divergence points [see Fig. 2(c)]. When the
correlation length diverges, the trajectory C crosses poles in
the integrand of Eq. (7), thereby preventing the trajectory
from deforming to the real axis. This fact can be seen
numerically (see red crosses on (off) the trajectory C (S) in
Fig. 1(c) [(d)]) and can also be shown analytically using the
Bethe equations [40]. In fact, the solution with ξ < 0 is not
a solution of the Bethe equations, and the analytic con-
tinuation from the Hermitian case breaks down. Similar
transitions of Bethe-ansatz solutions have been found in
other non-Hermitian integrable models [33,55,56].
The poles in the integrand in the first term on the

right-hand side of Eq. (7) are given by sin k ¼ λ� iu.
The same condition appears in the construction of the k-λ
string excitations in the Hubbard model [21,57] in which a
pair of quasimomenta kð1Þ; kð2Þ form a string configuration
around a center λ as sin kð1Þ ¼ λþ iu and sin kð2Þ ¼ λ − iu.
Physically, such string excitations describe the creation
of a doublon-holon pair [21]. The existence of the poles
on trajectory C indicates that the solution in the thermo-
dynamic limit becomes degenerate with a k-λ string
solution. In fact, the excitation energy of a k-λ string is
given by [21,46]

εðkÞ ¼ 2tuþ 2t coskþ 2t
Z

∞

0

dω
J1ðωÞ cosðω sinkÞe−uω

ωcoshuω
;

ð11Þ

which vanishes at the poles k ¼ �π − arcsinð�iuÞ. Here
not only the eigenvalues but also the eigenstates are the
same. This means that the critical point at which the
correlation length diverges is an exceptional point in
the sense that the non-Hermitian Hamiltonian Heff cannot
be diagonalized [24,58]. Importantly, we can show that the
nondiagonalizability of Heff leads to the nondiagonaliz-
ability of the LiouvillianL [40]. Thus, the exceptional point
is the same for both the non-Hermitian Hamiltonian and the
Liouvillian; however, this does not hold true for general
Liouvillians [59]. Since a nondiagonalizable Liouvillian
leads to a singular time dependence of generalized eigen-
modes [59], the exceptional point significantly alters the
transient dynamics starting from half filling.

The solid curve in Fig. 3 shows the position of the
exceptional point as a function of U and γ. Outside the
shaded region, the analytic continuation of the Bethe-ansatz
solution from the γ ¼ 0 case remains valid. An increase of
the correlation length in Fig. 2(b) can be understood as a
consequence of the proximity of the system to the excep-
tional point. For a large repulsive interaction U > 0, a Mott
insulator is formed as in the Hermitian Hubbard model and
it has a finite lifetime due to nonzero γ. On the other hand,
for small U > 0 and large γ, particles are localized due to
dissipation. Because the Hubbard gap becomes negative,
Re½Δc� < 0, in this region, the localization should be
attributed to the quantum Zeno effect rather than the
repulsive interaction, and therefore this localized state
may be called a Zeno insulator. Interestingly, the phase
diagram looks qualitatively similar to that obtained from a
mean-field theory for a three-dimensional non-Hermitian
attractive Hubbard model [34] after changing the sign of U
via the Shiba transformation [60].
Dissipation-induced spin-charge separation.—Finally,

we address an interesting connection between strong cor-
relations and dissipation. The Bethe equations, Eqs. (3) and
(4), can be simplified when one takes the large-juj limit in
which one can expand the equations as (here we setΦ ¼ 0)

kjL ¼ 2πIj þOð1=uÞ; ð12Þ

NΘ
�
λα
u

�
þOð1=u2Þ ¼ 2πJα þ

XM
β¼1

Θ
�
λα − λβ
2u

�
: ð13Þ

These equations indicate that the quasimomenta and spin
rapidities are completely decoupled in the juj → ∞ limit
[46,61]. The quasimomenta in this limit are identical to

0.0 0.5 1.0 1.5 2.0
/4

1

3

5

t 4t 4t
0.0 0.5 1.0 1.5 2.0

/

5
10
15
20

0.5 1.0 1.5 2.0

/
-400
-200

200
400(a) (b) (c)

FIG. 2. Correlation length ξ [Eq. (10)] for (a) U=4t ¼ 1,
(b) U=4t ¼ 0.7, and (c) U=4t ¼ 0.6.
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FIG. 3. “Phase diagram” of the Liouvillian eigenmode that
governs the transient dynamics at half filling. The solid curve
indicates the location of the exceptional point at which the
Liouvillian cannot be diagonalized. The shaded region cannot
be analytically continued from the case with γ ¼ 0. The dashed
curve shows where the real part of the Hubbard gap Re½Δc�
vanishes.

PHYSICAL REVIEW LETTERS 126, 110404 (2021)

110404-4



those of free fermions, and Eq. (13) gives the same Bethe
equation as that of the Heisenberg chain after rescaling
Λα ≡ λα=u. This leads to a remarkable fact that the
Bethe wave function is factorized into the charge part
and the spin part [61]. This argument is parallel to that
for the spin-charge separation in the one-dimensional
Hermitian Hubbard model. However, the crucial point
here is that the spin-charge separation can occur due to
large γ even in the absence of the repulsive interaction U.
Thus, in a Zeno insulator, the strong dissipation itself
induces a strongly correlated state, and holes created by a
loss behave as almost free fermions, whereas the spin
excitations are described by a non-Hermitian Heisenberg
chain with the exchange coupling 4t2=ðU − iγÞ [35]. As
spin-charge separation in a Hermitian Hubbard chain has
recently been observed in experiments with ultracold
atoms [62,63], the dissipation-induced spin-charge sepa-
ration should be observed with current experimental
techniques.
Conclusion.—We have shown that the one-dimensional

dissipative Hubbard model is exactly solvable. We
have exploited the integrability of a non-Hermitian
Hamiltonian to diagonalize a Liouvillian using the generic
triangular structure of Liouvillians of systems with loss
[29]. We have elucidated how strongly correlated states
of the Hubbard model are fundamentally altered by dis-
sipation, yet a number of important issues remain open.
For example, the breakdown of the analytic continuation
at half filling suggests that a novel state driven by an
interplay between strong correlations and dissipation may
be realized in the shaded region of Fig. 3. Since the
standard solution for the Hermitian Hubbard model cannot
be applied to that region, it is worthwhile to investigate
the nature of Bethe-ansatz solutions with non-Hermitian
interactions, as discussed in Refs. [12,18]. Finally, the
solution of Liouvillians based on the non-Hermitian Bethe-
ansatz method is not limited to the Hubbard model but
applicable to other many-body integrable systems with
appropriate Lindblad operators [29]. Examples include
one-dimensional Bose [64,65] and Fermi [66,67] gases
subject to particle losses [30], quantum impurity models
[68,69] with dissipation at an impurity [33], and an XXZ
spin chain [70,71] with Lindblad operators that lower
the magnetization [72]. We expect that the method pro-
posed in this Letter can be exploited to uncover as yet
unexplored exactly solvable models in open quantum
many-body systems.
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Note added.—After the submission of this manuscript, a
related work [72] appeared in which the Bethe-ansatz
approach to triangular Liouvillians is studied for different
models.
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